Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(28): 72652-72663, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37178297

ABSTRACT

Due to inadequate treatment and incorrect management, wastewater with dyes has a great toxic potential as an environmental liability, representing a major concern. In this context, this work aims to investigate the potential application of nanostructured powdery systems (nanocapsules and liposomes) in the photodegradation of Rhodamine B (RhB) dye, under UV and visible irradiation. Curcumin nanocapsules and liposomes containing ascorbic acid and ascorbyl palmitate were prepared, characterized, and dried using the spray drying technique. The drying processes of the nanocapsule and the liposome showed yields of 88% and 62%, respectively, and, after aqueous resuspension of the dry powders, it was possible to recover the nanocapsule size (140 nm) and liposome size (160 nm). The dry powders were characterized by Fourier transform infrared spectroscopy (FTIR), N2 physisorption at 77 K, X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS-UV). Under UV irradiation, 64.8% and 58.48% of RhB were removed with nanocapsules and liposomes, respectively. While under visible radiation, nanocapsules and liposomes were able to degrade 59.54% and 48.79% of RhB, respectively. Under the same conditions, commercial TiO2 showed degradation of 50.02% (UV) and 42.14% (visible). After 5 cycles of reuse, there was a decrease of about 5% for dry powders under UV irradiation and 7.5% under visible irradiation. Therefore, the nanostructured systems developed have potential application in heterogeneous photocatalysis for the degradation of organic pollutants, such as RhB, as they demonstrated superior photocatalytic performance to commercial catalysts (nanoencapsulated curcumin > ascorbic acid and ascorbyl palmitate liposomal > TiO2).


Subject(s)
Curcumin , Nanocapsules , Powders , Coloring Agents , Liposomes , Ascorbic Acid
2.
Drug Chem Toxicol ; 46(1): 155-165, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34930069

ABSTRACT

Curcumin is an active polyphenol substance found in the highest concentrations in the roots of Curcuma longa. Its health benefits have led to recent increases in the consumption of curcumin. It has anti-inflammatory and antioxidant activities and is a potent neuroprotective against diseases of the brain. Nevertheless, its low bioavailability and its relative difficulty crossing the blood-brain barrier limit curcumin's use for these purposes. Curcumin-loaded nanoparticles may be an effective treatment for several diseases although there is a paucity of studies reporting its safety in the central nervous system (CNS). Therefore, this study aimed to identify non-neurotoxic concentrations of free curcumin and two nanoformulations of curcumin. Cell lines BV-2 and SH-SY5Y, both originating from the CNS, were evaluated after 24, 48, and 72 h of treatment with free curcumin and nanocapsules We measured viability, proliferation, and dsDNA levels. We measured levels of reactive oxygen species and nitric oxide as proxies for oxidative stress in culture supernatants. We found that free curcumin was toxic at 10 and 20 µM, principally at 72 h. Nanoformulations were more neurotoxic than the free form. Safe concentrations of free curcumin are between 1-5 µM, and these concentrations were lower for nanoformulations. We determined the ideal concentrations of free curcumin and nanocapsules serving as a basis for studies of injuries that affect the CNS.


Subject(s)
Curcumin , Nanocapsules , Neuroblastoma , Humans , Curcumin/pharmacology , Nanocapsules/toxicity , Cell Line , Oxidative Stress
3.
Nat Prod Res ; 36(5): 1321-1326, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33356570

ABSTRACT

The objective of this work was to produce and characterise nanoemulsions containing tucumã extract and to evaluate the performance of the nanostructure and the free compound regarding antitumor activity, cytotoxicity, and oxidative metabolism in NB4/APL cells. The nanoemulsions showed adequate physicochemical characteristics (average size approx. 200 nm, polydispersity index less than 0.3, negative zeta potential and acid pH) maintained stable up to 90 days of storage in refrigeration condition. The nanoformulations did not present protein corona formation. Blank nanoemulsion treatments showed moderate toxicity. Furthermore, the nanoemulsion loaded with extract showed better antileukemic results than the free extract. However, nanoemulsions can be promising carriers of natural compounds, emphasising their biological properties and constituting alternatives in treating diseases.


Subject(s)
Arecaceae , Nanostructures , Antioxidants/chemistry , Emulsions/chemistry , Nanostructures/chemistry
4.
Braz. J. Pharm. Sci. (Online) ; 58: e20492, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420382

ABSTRACT

Abstract The objective of this study was to evaluate the influence of vitamin C (VC) on the stability of stored liposomes under different climatic conditions. Liposomal formulations containing 1 mg/mL of VC (LIP-VC) and blank formulations (LIP-B) were prepared by the reverse-phase evaporation method. After preparation, they were characterized according to their refractive index, average vesicle diameter, polydispersity index (PDI), zeta potential, pH, content, encapsulation efficiency (EE%), morphology, stability and antioxidant activity. For stability, LIP-VC and LIP-B were stored in different climatic conditions (4 °C, 25 °C and 40 °C) for 30 days. The LIP-VC presented 1.3365 refractive index, 161 nm of mean diameter, 0.231 PDI, -7.3 mV zeta potential, 3.2 pH, 19.4% EE%, spherical morphology, 1 mg/mL of VC content, and antioxidant activity of 12 and 11.4 μmol of TE/mL for the radical DPPH and ABTS+, respectively. During stability, the LIP-B stored in 40 °C showed an instability in the parameters: PDI, vesicle size and zeta potential after 15 days, while the LIP-VC remained stable in its size and PDI for 30 days. After that, it is shown that VC can be used as an antioxidant and stabilizer in liposomes to increase the stability and shelf-life of vesicles.

SELECTION OF CITATIONS
SEARCH DETAIL
...