Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Psychol ; 15: 1426434, 2024.
Article in English | MEDLINE | ID: mdl-38979068

ABSTRACT

Introduction: Making decisions and investing effort to obtain rewards may depend on various factors, such as the delay to reward, the probability of its occurrence, and the information that can be collected about it. As predicted by various theories, pigeons and other animals indeed mind these factors when deciding. Methods: We now implemented a task in which pigeons were allowed to choose among three options and to peck at the chosen key to improve the conditions of reward delivery. Pecking more at a first color reduced the 12-s delay before food was delivered with a 33.3% chance, pecking more at a second color increased the initial 33.3% chance of food delivery but did not reduce the 12-s delay, and pecking more at a third color reduced the delay before information was provided whether the trial will be rewarded with a 33.3% chance after 12 s. Results: Pigeons' preference (delay vs. probability, delay vs. information, and probability vs. information), as well as their pecking effort for the chosen option, were analyzed. Our results indicate that hungry pigeons preferred to peck for delay reduction but did not work more for that option than for probability increase, which was the most profitable alternative and did not induce more pecking effort. In this task, information was the least preferred and induced the lowest level of effort. Refed pigeons showed no preference for any option but did not drastically reduce the average amounts of effort invested. Discussion: These results are discussed in the context of species-specific ecological conditions that could constrain current foraging theories.

2.
J Neurol ; 271(8): 5525-5540, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896263

ABSTRACT

BACKGROUND: Myotonic dystrophy is a multisystem disorder characterized by widespread organic involvement including central nervous system symptoms. Although myotonic dystrophy disease types 1 (DM1) and 2 (DM2) cover a similar spectrum of symptoms, more pronounced clinical and brain alterations have been described in DM1. Here, we investigated brain volumetric and white matter alterations in both disease types and compared to healthy controls (HC). METHODS: MRI scans were obtained from 29 DM1, 27 DM2, and 56 HC. We assessed macro- and microstructural brain changes by surface-based analysis of cortical thickness of anatomical images and tract-based spatial statistics of fractional anisotropy (FA) obtained by diffusion-weighted imaging, respectively. Global MRI measures were related to clinical and neuropsychological scores to evaluate their clinical relevance. RESULTS: Cortical thickness was reduced in both patient groups compared to HC, showing similar patterns of regional distribution in DM1 and DM2 (occipital, temporal, frontal) but more pronounced cortical thinning for DM1. Similarly, FA values showed a widespread decrease in DM1 and DM2 compared to HC. Interestingly, FA was significantly lower in DM1 compared to DM2 within most parts of the brain. CONCLUSION: Comparisons between DM1 and DM2 indicate a more pronounced cortical thinning of grey matter and a widespread reduction in microstructural integrity of white matter in DM1. Future studies are required to unravel the underlying and separating mechanisms for the disease courses of the two types and their neuropsychological symptoms.


Subject(s)
Myotonic Dystrophy , Humans , Myotonic Dystrophy/pathology , Myotonic Dystrophy/diagnostic imaging , Myotonic Dystrophy/complications , Male , Female , Adult , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Cerebral Cortical Thinning/diagnostic imaging , Cerebral Cortical Thinning/pathology , Magnetic Resonance Imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Young Adult , Neuropsychological Tests , Anisotropy
3.
Laterality ; 29(3): 246-282, 2024 May.
Article in English | MEDLINE | ID: mdl-38669348

ABSTRACT

Studying behavioural lateralization in animals holds great potential for answering important questions in laterality research and clinical neuroscience. However, comparative research encounters challenges in reliability and validity, requiring new approaches and innovative designs to overcome. Although validated tests exist for some species, there is yet no standard test to compare lateralized manual behaviours between individuals, populations, and animal species. One of the main reasons is that different fine-motor abilities and postures must be considered for each species. Given that pawedness/handedness is a universal marker for behavioural lateralization across species, this article focuses on three commonly investigated species in laterality research: dogs, cats, and rats. We will present six apparatuses (two for dogs, three for cats, and one for rats) that enable an accurate assessment of paw preference. Design requirements and specifications such as zoometric fit for different body sizes and ages, reliability, robustness of the material, maintenance during and after testing, and animal welfare are extremely important when designing a new apparatus. Given that the study of behavioural lateralization yields crucial insights into animal welfare, laterality research, and clinical neuroscience, we aim to provide a solution to these challenges by presenting design requirements and innovations in methodology across species.


Subject(s)
Functional Laterality , Animals , Dogs , Cats , Functional Laterality/physiology , Rats , Behavior, Animal/physiology , Reproducibility of Results
4.
J Comp Neurol ; 532(4): e25611, 2024 04.
Article in English | MEDLINE | ID: mdl-38625816

ABSTRACT

A core component of the avian pallial cognitive network is the multimodal nidopallium caudolaterale (NCL) that is considered to be analogous to the mammalian prefrontal cortex (PFC). The NCL plays a key role in a multitude of executive tasks such as working memory, decision-making during navigation, and extinction learning in complex learning environments. Like the PFC, the NCL is positioned at the transition from ascending sensory to descending motor systems. For the latter, it sends descending premotor projections to the intermediate arcopallium (AI) and the medial striatum (MSt). To gain detailed insight into the organization of these projections, we conducted several retrograde and anterograde tracing experiments. First, we tested whether NCL neurons projecting to AI (NCLarco neurons) and MSt (NCLMSt neurons) are constituted by a single neuronal population with bifurcating neurons, or whether they form two distinct populations. Here, we found two distinct projection patterns to both target areas that were associated with different morphologies. Second, we revealed a weak topographic projection toward the medial and lateral striatum and a strong topographic projection toward AI with clearly distinguishable sensory termination fields. Third, we investigated the relationship between the descending NCL pathways to the arcopallium with those from the hyperpallium apicale, which harbors a second major descending pathway of the avian pallium. We embed our findings within a system of parallel pallio-motor loops that carry information from separate sensory modalities to different subpallial systems. Our results also provide insights into the evolution of the avian motor system from which, possibly, the song system has emerged.


Subject(s)
Brain , Columbidae , Animals , Columbidae/physiology , Cerebral Cortex/physiology , Corpus Striatum , Neostriatum/physiology , Mammals
5.
Neurosci Insights ; 19: 26331055241235918, 2024.
Article in English | MEDLINE | ID: mdl-38425669

ABSTRACT

Over the past 30 years, behavioral, computational, and neuroscientific investigations have yielded fresh insights into how pigeons adapt to the diverse complexities of their visual world. A prime area of interest has been how pigeons categorize the innumerable individual stimuli they encounter. Most studies involve either photorealistic representations of actual objects thus affording the virtue of being naturalistic, or highly artificial stimuli thus affording the virtue of being experimentally manipulable. Together those studies have revealed the pigeon to be a prodigious classifier of both naturalistic and artificial visual stimuli. In each case, new computational models suggest that elementary associative learning lies at the root of the pigeon's category learning and generalization. In addition, ongoing computational and neuroscientific investigations suggest how naturalistic and artificial stimuli may be processed along the pigeon's visual pathway. Given the pigeon's availability and affordability, there are compelling reasons for this animal model to gain increasing prominence in contemporary neuroscientific research.

6.
Res Sq ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496470

ABSTRACT

Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, only invasive techniques, such as autoradiography or lesion, have been employed to understand this behaviour. The primary limitation of these methods lies in their constrained access to the entire brain, impeding the exploration of brain networks crucial at various stages of this paradigm. Recently, advances in functional magnetic resonance imaging (fMRI) in the avian brain have opened new windows to explore bird's brain function at the network level. Here, we developed a ground-breaking non-invasive functional MRI technique for awake, newly hatched chicks that record whole-brain BOLD signal changes throughout imprinting experiments. While the initial phases of memory acquisition imprinting behaviour have been unravelled, the long-term storage and retrieval components of imprinting memories are still unknown. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This platform opens up new avenues for exploring the broader landscape of learning and memory processes in neonatal vertebrates, contributing to a more comprehensive understanding of the intricate interplay between behaviour and brain networks.

7.
Magn Reson Imaging ; 108: 104-110, 2024 May.
Article in English | MEDLINE | ID: mdl-38336113

ABSTRACT

Invasive neuronal tract-tracing is not permitted in very large or endangered animals. This is especially the case in marine mammals like dolphins. Diffusion-weighted imaging of fiber tracts could be an alternative if feasible even in brains that have been fixed in formalin for a long time. This currently is a problem, especially for detecting crossing fibers. We applied a state-of-the-art algorithm of Diffusion-weighted imaging called Constrained Spherical Deconvolution on diffusion data of three fixed brains of bottlenose dolphins using clinical human MRI parameters and were able to identify complex fiber patterns within a voxel. Our findings indicate that in order to maintain the structural integrity of the tissue, short-term post-mortem fixation is necessary. Furthermore, pre-processing steps are essential to remove the classical Diffusion-weighted imaging artifacts from images: however, the algorithm is still able to resolve fiber tracking in regions with various signal intensities. The described imaging technique reveals complex fiber patterns in cetacean brains that have been preserved in formalin for extended periods of time and thus opens a new window into our understanding of cetacean neuroanatomy.


Subject(s)
Dolphins , Animals , Humans , Brain/diagnostic imaging , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Neurons , Formaldehyde
8.
Sci Rep ; 14(1): 1368, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228689

ABSTRACT

Previous research investigating relations between general intelligence and graph-theoretical properties of the brain's intrinsic functional network has yielded contradictory results. A promising approach to tackle such mixed findings is multi-center analysis. For this study, we analyzed data from four independent data sets (total N > 2000) to identify robust associations amongst samples between g factor scores and global as well as node-specific graph metrics. On the global level, g showed no significant associations with global efficiency or small-world propensity in any sample, but significant positive associations with global clustering coefficient in two samples. On the node-specific level, elastic-net regressions for nodal efficiency and local clustering yielded no brain areas that exhibited consistent associations amongst data sets. Using the areas identified via elastic-net regression in one sample to predict g in other samples was not successful for local clustering and only led to one significant, one-way prediction across data sets for nodal efficiency. Thus, using conventional graph theoretical measures based on resting-state imaging did not result in replicable associations between functional connectivity and general intelligence.


Subject(s)
Magnetic Resonance Imaging , Nerve Net , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods , Intelligence
9.
Trends Cogn Sci ; 28(3): 197-209, 2024 03.
Article in English | MEDLINE | ID: mdl-38097447

ABSTRACT

Many cognitive neuroscientists believe that both a large brain and an isocortex are crucial for complex cognition. Yet corvids and parrots possess non-cortical brains of just 1-25 g, and these birds exhibit cognitive abilities comparable with those of great apes such as chimpanzees, which have brains of about 400 g. This opinion explores how this cognitive equivalence is possible. We propose four features that may be required for complex cognition: a large number of associative pallial neurons, a prefrontal cortex (PFC)-like area, a dense dopaminergic innervation of association areas, and dynamic neurophysiological fundaments for working memory. These four neural features have convergently evolved and may therefore represent 'hard to replace' mechanisms enabling complex cognition.


Subject(s)
Birds , Cognition , Animals , Birds/physiology , Cognition/physiology , Neocortex , Prefrontal Cortex
10.
NMR Biomed ; 37(1): e5034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37681398

ABSTRACT

Functional magnetic resonance imaging (fMRI) in awake small animals such as pigeons or songbirds opens a new window into the neural fundaments of cognitive behavior. However, high-field fMRI in the avian brain is challenging due to strong local magnetic field inhomogeneities caused by air cavities in the skull. A spoiled gradient-echo fMRI sequence has already been used to map the auditory network in songbirds, but due to susceptibility artifacts only 50% of the whole brain could be recorded. Since whole-brain fMRI coverage is vital to reveal whole-brain networks, an MRI sequence that is less susceptible to these artifacts was required. This was recently achieved in various bird species by using a rapid acquisition with relaxation enhancement (RARE) sequence. Weak blood oxygen level-dependent (BOLD) sensitivity, low temporal resolution, and heat caused by the long train of RF refocusing pulses are the main limits of RARE fMRI at high magnetic fields. To go beyond some of these limitations, we here describe the implementation of a two-segmented spin-echo echo-planar imaging (SE-EPI). The proposed sequence covers the whole brain of awake pigeons. The sequence was applied to investigate the auditory network in awake pigeons and assessed the relative merits of this method in comparison with the single-shot RARE sequence. At the same imaging resolution but with a volume acquisition of 3 s versus 4 s for RARE, the two-segmented SE-EPI provided twice the strength of BOLD activity compared with the single-shot RARE sequence, while the image signal-to-noise ratio (SNR) and in particular the temporal SNR were very similar for the two sequences. In addition, the activation patterns in two-segmented SE-EPI data are more symmetric and larger than single-shot RARE results. Two-segmented SE-EPI represents a valid alternative to the RARE sequence in avian fMRI research since it yields more than twice the BOLD sensitivity per unit of time with much less energy deposition and better temporal resolution, particularly for event-related experiments.


Subject(s)
Columbidae , Echo-Planar Imaging , Animals , Echo-Planar Imaging/methods , Wakefulness , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology
11.
Sci Am ; 322(1): 48, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-39014826
SELECTION OF CITATIONS
SEARCH DETAIL