Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Neurocrit Care ; 36(3): 927-941, 2022 06.
Article in English | MEDLINE | ID: mdl-34918214

ABSTRACT

BACKGROUND: Trauma-induced coagulopathy in traumatic brain injury (TBI) remains associated with high rates of complications, unfavorable outcomes, and mortality. The underlying mechanisms are largely unknown. Embedded in the prospective multinational Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study, coagulation profiles beyond standard conventional coagulation assays were assessed in patients with isolated TBI within the very early hours of injury. METHODS: Results from blood samples (citrate/EDTA) obtained on hospital admission were matched with clinical and routine laboratory data of patients with TBI captured in the CENTER-TBI central database. To minimize confounding factors, patients with strictly isolated TBI (iTBI) (n = 88) were selected and stratified for coagulopathy by routine international normalized ratio (INR): (1) INR < 1.2 and (2) INR ≥ 1.2. An INR > 1.2 has been well adopted over time as a threshold to define trauma-related coagulopathy in general trauma populations. The following parameters were evaluated: quick's value, activated partial thromboplastin time, fibrinogen, thrombin time, antithrombin, coagulation factor activity of factors V, VIII, IX, and XIII, protein C and S, plasminogen, D-dimer, fibrinolysis-regulating parameters (thrombin activatable fibrinolysis inhibitor, plasminogen activator inhibitor 1, antiplasmin), thrombin generation, and fibrin monomers. RESULTS: Patients with iTBI with INR ≥ 1.2 (n = 16) had a high incidence of progressive intracranial hemorrhage associated with increased mortality and unfavorable outcome compared with patients with INR < 1.2 (n = 72). Activity of coagulation factors V, VIII, IX, and XIII dropped on average by 15-20% between the groups whereas protein C and S levels dropped by 20%. With an elevated INR, thrombin generation decreased, as reflected by lower peak height and endogenous thrombin potential (ETP), whereas the amount of fibrin monomers increased. Plasminogen activity significantly decreased from 89% in patients with INR < 1.2 to 76% in patients with INR ≥ 1.2. Moreover, D-dimer levels significantly increased from a mean of 943 mg/L in patients with INR < 1.2 to 1,301 mg/L in patients with INR ≥ 1.2. CONCLUSIONS: This more in-depth analysis beyond routine conventional coagulation assays suggests a counterbalanced regulation of coagulation and fibrinolysis in patients with iTBI with hemostatic abnormalities. We observed distinct patterns involving key pathways of the highly complex and dynamic coagulation system that offer windows of opportunity for further research. Whether the changes observed on factor levels may be relevant and explain the worse outcome or the more severe brain injuries by themselves remains speculative.


Subject(s)
Blood Coagulation Disorders , Brain Injuries, Traumatic , Brain Injuries, Traumatic/epidemiology , Humans , Plasminogen , Prospective Studies , Protein C , Thrombin
2.
Neurocrit Care ; 35(1): 184-196, 2021 08.
Article in English | MEDLINE | ID: mdl-33306177

ABSTRACT

BACKGROUND: Trauma-induced coagulopathy in patients with traumatic brain injury (TBI) is associated with high rates of complications, unfavourable outcomes and mortality. The mechanism of the development of TBI-associated coagulopathy is poorly understood. METHODS: This analysis, embedded in the prospective, multi-centred, observational Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study, aimed to characterise the coagulopathy of TBI. Emphasis was placed on the acute phase following TBI, primary on subgroups of patients with abnormal coagulation profile within 4 h of admission, and the impact of pre-injury anticoagulant and/or antiplatelet therapy. In order to minimise confounding factors, patients with isolated TBI (iTBI) (n = 598) were selected for this analysis. RESULTS: Haemostatic disorders were observed in approximately 20% of iTBI patients. In a subgroup analysis, patients with pre-injury anticoagulant and/or antiplatelet therapy had a twice exacerbated coagulation profile as likely as those without premedication. This was in turn associated with increased rates of mortality and unfavourable outcome post-injury. A multivariate analysis of iTBI patients without pre-injury anticoagulant therapy identified several independent risk factors for coagulopathy which were present at hospital admission. Glasgow Coma Scale (GCS) less than or equal to 8, base excess (BE) less than or equal to - 6, hypothermia and hypotension increased risk significantly. CONCLUSION: Consideration of these factors enables early prediction and risk stratification of acute coagulopathy after TBI, thus guiding clinical management.


Subject(s)
Blood Coagulation Disorders , Brain Injuries, Traumatic , Blood Coagulation Disorders/epidemiology , Blood Coagulation Disorders/etiology , Blood Coagulation Tests , Brain Injuries, Traumatic/complications , Glasgow Coma Scale , Humans , Prospective Studies
3.
J Neurotrauma ; 37(19): 2069-2080, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32312149

ABSTRACT

An increasing number of elderly patients are being affected by traumatic brain injury (TBI) and a significant proportion are on pre-hospital antithrombotic therapy for cardio- or cerebrovascular indications. We have quantified the impact of antiplatelet/anticoagulant (APAC) agents on radiological lesion progression in acute TBI, using a novel, semi-automated approach to volumetric lesion measurement, and explored the impact of use on clinical outcomes in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We used a 1:1 propensity-matched cohort design, matching controls to APAC users based on demographics, baseline clinical status, pre-injury comorbidities, and injury severity. Subjects were selected from a pool of patients enrolled in CENTER-TBI with computed tomography (CT) scan at admission and repeated within 7 days of injury. We calculated absolute changes in volume of intraparenchymal, extra-axial, intraventricular, and total intracranial hemorrhage (ICH) between scans, and compared volume of hemorrhagic progression, proportion of patients with significant degree of progression (>25% of initial volume), proportion with new ICH on follow-up CT, as well as clinical course and outcomes. A total of 316 patients were included (158 APAC users; 158 controls). The mean volume of progression was significantly higher in the APAC group for extra-axial (3.1 vs. 1.3 mL, p = 0.01), but not intraparenchymal (3.8 vs. 4.6 mL, p = 0.65), intraventricular (0.2 vs. 0.0 mL, p = 0.79), or total intracranial hemorrhage (ICH; 7.0 vs. 6.0 mL, p = 0.08). More patients had significant hemorrhage growth (54.1 vs. 37.0%, p = 0.003) and delayed ICH (4 of 18 vs. none; p = 0.04) in the APAC group compared with controls, but this was not associated with differences in length of stay (LOS), rates of neurosurgical intervention, mortality or Glasgow Outcome Scale Extended (GOS-E) score at 6 months. Pre-injury use of antithrombotic agents was associated with greater expansion of extra-axial lesions, higher rates of significant hemorrhagic progression, and higher risk of delayed traumatic ICH, but this was not associated with worse clinical course or functional outcomes.


Subject(s)
Anticoagulants/therapeutic use , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Intracranial Hemorrhage, Traumatic/diagnostic imaging , Platelet Aggregation Inhibitors/therapeutic use , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Disease Progression , Female , Glasgow Outcome Scale , Humans , Intracranial Hemorrhage, Traumatic/etiology , Male , Middle Aged , Propensity Score , Tomography, X-Ray Computed
4.
Medicina (Kaunas) ; 55(10)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569443

ABSTRACT

: Background and objectives: Prompt identification of patients with acute traumatic coagulopathy (ATC) is necessary to expedite appropriate treatment. An early clinical prediction tool that does not require laboratory testing is a convenient way to estimate risk. Prediction models have been developed, but none are in widespread use. This systematic review aimed to identify and assess accuracy of prediction tools for ATC. Materials and Methods: A search of OVID Medline and Embase was performed for articles published between January 1998 and February 2018. We searched for prognostic and predictive studies of coagulopathy in adult trauma patients. Studies that described stand-alone predictive or associated factors were excluded. Studies describing prediction of laboratory-diagnosed ATC were extracted. Performance of these tools was described. Results: Six studies were identified describing four different ATC prediction tools. The COAST score uses five prehospital variables (blood pressure, temperature, chest decompression, vehicular entrapment and abdominal injury) and performed with 60% sensitivity and 96% specificity to identify an International Normalised Ratio (INR) of >1.5 on an Australian single centre cohort. TICCS predicted an INR of >1.3 in a small Belgian cohort with 100% sensitivity and 96% specificity based on admissions to resuscitation rooms, blood pressure and injury distribution but performed with an Area under the Receiver Operating Characteristic (AUROC) curve of 0.700 on a German trauma registry validation. Prediction of Acute Coagulopathy of Trauma (PACT) was developed in USA using six weighted variables (shock index, age, mechanism of injury, Glasgow Coma Scale, cardiopulmonary resuscitation, intubation) and predicted an INR of >1.5 with 73.1% sensitivity and 73.8% specificity. The Bayesian network model is an artificial intelligence system that predicted a prothrombin time ratio of >1.2 based on 14 clinical variables with 90% sensitivity and 92% specificity. Conclusions: The search for ATC prediction models yielded four scoring systems. While there is some potential to be implemented effectively in clinical practice, none have been sufficiently externally validated to demonstrate associations with patient outcomes. These tools remain useful for research purposes to identify populations at risk of ATC.


Subject(s)
Blood Coagulation Disorders/diagnosis , Predictive Value of Tests , Wounds and Injuries/complications , Acute Disease , Bayes Theorem , Blood Coagulation Disorders/etiology , Clinical Decision Rules , Cohort Studies , Humans , Injury Severity Score , Reproducibility of Results , Risk Assessment , Validation Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...