Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Acta amaz ; 49(3): 221-231, jul. - set. 2019.
Article in English | LILACS | ID: biblio-1119052

ABSTRACT

The introduction of nonnative species is one of the main threats to freshwater ecosystems. Although omnivory and intraguild predation are common in those systems, little is known about the effects of introduced omnivorous fish on pelagic and littoral communities. This study tested predictions of food-web theory regarding the effects of omnivorous fish introduction on previously fishless lakes in the Amazonian uplands of Serra dos Carajás, Pará, Brazil. The trophic structure of two similar lakes, one with and the other without the introduced omnivorous fish Astyanax bimaculatus, was compared using a data series of biotic variables collected from both lakes twice a year from 2010 to 2013. Zooplankton was more abundant in the lake with fish, and the zooplankton composition differed between lakes. Phytoplankton richness and chlorophyll-a were higher in the lake with the introduced fish than in the fishless lake regardless of phosphorus limitation. For the benthic macroinvertebrate communities, species richness and biomass were higher in the fishless lake. Our results also indicate that A. bimaculatus has the potential to link pelagic and littoral habitats through nutrient cycling. The differences observed between the studied lakes are consistent with predictions from food-web theory regarding the effects of multichain omnivorous fish on trophic dynamics. Despite limitations regarding replication at the ecosystem level, it is possible to infer from our findings that the introduction of an omnivorous fish might have changed lake overall functioning. (AU)


Subject(s)
Introduced Species , Biota , Fishes , Fresh Water
2.
Ecology ; 98(5): 1475, 2017 May.
Article in English | MEDLINE | ID: mdl-28263380

ABSTRACT

Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater and marine animals of N and/or P excretion rates. These observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. This data set was used to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).


Subject(s)
Aquatic Organisms/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Animals , Ecosystem , Fresh Water , Phylogeny
3.
Ecol Evol ; 5(21): 4747-56, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26640656

ABSTRACT

The mere presence of predators (i.e., predation risk) can alter consumer physiology by restricting food intake and inducing stress, which can ultimately affect prey-mediated ecosystem processes such as nutrient cycling. However, many environmental factors, including conspecific density, can mediate the perception of risk by prey. Prey conspecific density has been defined as a fundamental feature that modulates perceived risk. In this study, we tested the effects of predation risk on prey nutrient stoichiometry (body and excretion). Using a constant predation risk, we also tested the effects of varying conspecific densities on prey responses to predation risk. To answer these questions, we conducted a mesocosm experiment using caged predators (Belostoma sp.), and small bullfrog tadpoles (Lithobates catesbeianus) as prey. We found that L. catesbeianus tadpoles adjust their body nutrient stoichiometry in response to predation risk, which is affected by conspecific density. We also found that the prey exhibited strong morphological responses to predation risk (i.e., an increase in tail muscle mass), which were positively correlated to body nitrogen content. Thus, we pose the notion that in risky situations, adaptive phenotypic responses rather than behavioral ones might partially explain why prey might have a higher nitrogen content under predation risk. In addition, the interactive roles of conspecific density and predation risk, which might result in reduced perceived risk and physiological restrictions in prey, also affected how prey stoichiometry responded to the fear of predation.

4.
PLoS One ; 10(7): e0133122, 2015.
Article in English | MEDLINE | ID: mdl-26176538

ABSTRACT

BACKGROUND: In small-scale fishery, information provided by fishers has been useful to complement current and past lack of knowledge on species and environment. METHODOLOGY: Through interviews, 82 fishers from the largest fishing communities on the north and south borders of a Brazilian northeastern coastal state provided estimates of the catch per unit effort (CPUE) and rank of species abundance of their main target fishes for three time points: current year (2013 at the time of the research), 10, and 20 years past. This information was contrasted to other available data sources: scientific sampling of fish landing (2013), governmental statistics (2003), and information provided by expert fishers (1993), respectively. PRINCIPAL FINDINGS: Fishers were more accurate when reporting information about their maximum CPUE for 2013, but except for three species, which they estimated accurately, fishers overestimated their mean CPUE per species. Fishers were also accurate at establishing ranks of abundance of their main target species for all periods. Fishers' beliefs that fish abundance has not changed over the last 10 years (2003-2013) were corroborated by governmental and scientific landing data. CONCLUSIONS: The comparison between official and formal landing records and fishers' perceptions revealed that fishers are accurate when reporting maximum CPUE, but not when reporting mean CPUE. Moreover, fishers are less precise the less common a species is in their catches, suggesting that they could provide better information for management purposes on their current target species.


Subject(s)
Conservation of Natural Resources/methods , Fisheries/statistics & numerical data , Fishes , Animals , Brazil , Data Collection , Ecosystem , Geography , Knowledge
5.
Environ Microbiol Rep ; 6(2): 131-5, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24596285

ABSTRACT

Temporal changes in environmental conditions and in bacterial community composition (BCC) regulate bacterial processes and ecosystem services. An increase in temperature accelerates bacterial processes in polar or temperate regions, but this relationship has not been documented for the tropics. Here, we tested the interactive effects of changing the BCC and increasing the water temperature on tropical bacterial respiration (BR). The BCC was manipulated through successional changes of the bacterial community in a filtered water sample from a tropical coastal lagoon. Four succession incubation periods (120, 240, 288 and 336 h) and four different water temperatures (23, 28, 33 and 38(o)C) were tested in a full-factorial design microcosm experiment. Both the BCC and the temperature had significant individual, but not interactive, effects on BR. Temperature increasing consistently decreased BR, while there was no clear pattern of successional effects on BR observed. No BCC tested was able to diminish the negative effects of temperature increases on BR. Our results suggest that the effects of an increasing temperature can negatively affect BR, even in tropical ecosystems with different BCC.


Subject(s)
Bacteria/metabolism , Seawater/chemistry , Seawater/microbiology , Biodiversity , Ecosystem , Energy Metabolism , Temperature
6.
PLoS One ; 6(7): e22205, 2011.
Article in English | MEDLINE | ID: mdl-21789234

ABSTRACT

Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé - RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry.


Subject(s)
Biomass , Carbon/metabolism , Food Chain , Nitrogen/metabolism , Phosphorus/metabolism , Animals , Autotrophic Processes/radiation effects , Chlorophyll/metabolism , Chlorophyll A , Light , Snails/physiology , Snails/radiation effects , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...