Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microbiome ; 9(1): 50, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602336

ABSTRACT

BACKGROUND: Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth's ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. METHODS: In the MASE project (Mars Analogues for Space Exploration), we selected representative anoxic analogue environments (permafrost, salt-mine, acidic lake and river, sulfur springs) for the comprehensive analysis of their microbial communities. We assessed the microbiome profile of intact cells by propidium monoazide-based amplicon and shotgun metagenome sequencing, supplemented with an extensive cultivation effort. RESULTS: The information retrieved from microbiome analyses on the intact microbial community thriving in the MASE sites, together with the isolation of 31 model microorganisms and successful binning of 15 high-quality genomes allowed us to observe principle pathways, which pinpoint specific microbial functions in the MASE sites compared to moderate environments. The microorganisms were characterized by an impressive machinery to withstand physical and chemical pressures. All levels of our analyses revealed the strong and omnipresent dependency of the microbial communities on complex organic matter. Moreover, we identified an extremotolerant cosmopolitan group of 34 poly-extremophiles thriving in all sites. CONCLUSIONS: Our results reveal the presence of a core microbiome and microbial taxonomic similarities between saline and acidic anoxic environments. Our work further emphasizes the importance of the environmental, terrestrial parameters for the functionality of a microbial community, but also reveals a high proportion of living microorganisms in extreme environments with a high adaptation potential within habitability borders. Video abstract.


Subject(s)
Exobiology , Extreme Environments , Microbiota/physiology , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Metagenome , Microbiota/genetics
2.
Curr Issues Mol Biol ; 38: 103-122, 2020.
Article in English | MEDLINE | ID: mdl-31967578

ABSTRACT

Five bacterial (facultatively) anaerobic strains, namely Buttiauxella sp. MASE-IM-9, Clostridium sp. MASE-IM-4, Halanaerobium sp. MASE-BB-1, Trichococcus sp. MASE-IM-5, and Yersinia intermedia MASE-LG-1 isolated from different extreme natural environments were subjected to Mars relevant environmental stress factors in the laboratory under controlled conditions. These stress factors encompassed low water activity, oxidizing compounds, and ionizing radiation. Stress tests were performed under permanently anoxic conditions. The survival rate after addition of sodium perchlorate (Na-perchlorate) was found to be species-specific. The inter-comparison of the five microorganisms revealed that Clostridium sp. MASE-IM-4 was the most sensitive strain (D10-value (15 min, NaClO4) = 0.6 M). The most tolerant microorganism was Trichococcus sp. MASE-IM-5 with a calculated D10-value (15 min, NaClO4) of 1.9 M. Cultivation in the presence of Na-perchlorate in Martian relevant concentrations up to 1 wt% led to the observation of chains of cells in all strains. Exposure to Na-perchlorate led to a lowering of the survival rate after desiccation. Consecutive exposure to desiccating conditions and ionizing radiation led to additive effects. Moreover, in a desiccated state, an enhanced radiation tolerance could be observed for the strains Clostridium sp. MASE-IM-4 and Trichococcus sp. MASE-IM-5. These data show that anaerobic microorganisms from Mars analogue environments can resist a variety of Martian-simulated stresses either individually or in combination. However, responses were species-specific and some Mars-simulated extremes killed certain organisms. Thus, although Martian stresses would be expected to act differentially on microorganisms, none of the expected extremes tested here and found on Mars prevent the growth of anaerobic microorganisms.


Subject(s)
Bacteria, Anaerobic/growth & development , Extraterrestrial Environment , Extreme Environments , Bacteria, Anaerobic/drug effects , Bacteria, Anaerobic/radiation effects , Carnobacteriaceae/drug effects , Carnobacteriaceae/growth & development , Carnobacteriaceae/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Clostridium/drug effects , Clostridium/growth & development , Clostridium/radiation effects , Desiccation , Enterobacteriaceae/drug effects , Enterobacteriaceae/growth & development , Enterobacteriaceae/radiation effects , Firmicutes/drug effects , Firmicutes/growth & development , Firmicutes/radiation effects , Mars , Oxidative Stress , Perchlorates/toxicity , Radiation Tolerance , Sodium Compounds/toxicity , Stress, Physiological/radiation effects , Time Factors , Yersinia/drug effects , Yersinia/growth & development , Yersinia/radiation effects
3.
Front Microbiol ; 9: 335, 2018.
Article in English | MEDLINE | ID: mdl-29535699

ABSTRACT

Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways.

4.
FEMS Microbiol Lett ; 365(6)2018 03 01.
Article in English | MEDLINE | ID: mdl-29474542

ABSTRACT

Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes.


Subject(s)
Desiccation , Environmental Microbiology , Extreme Environments , Hypoxia , Radiation Tolerance , Adaptation, Biological , Bacteria/metabolism , Bacteria/radiation effects , Bacterial Physiological Phenomena , Microbial Viability/radiation effects , Radiation, Ionizing
5.
PLoS One ; 12(10): e0185178, 2017.
Article in English | MEDLINE | ID: mdl-29069099

ABSTRACT

The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today.


Subject(s)
Mars , Stress, Physiological , Yersinia/physiology , Cold Temperature , Desiccation , Dose-Response Relationship, Radiation , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Salts , X-Rays , Yersinia/classification , Yersinia/genetics , Yersinia/radiation effects
6.
Genome Announc ; 5(26)2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28663303

ABSTRACT

Phaeobacter leonis strain 306T is an alphaproteobacterium isolated from Mediterranean Sea sediments. It belongs to the genus Phaeobacter, which was recently proposed and is still poorly characterized. In an effort to better understand the fundamental aspects of the microbiology of this genus, we present here the 4.82-Mb draft genome sequence of Phaeobacter leonis strain 306T.

7.
Genome Announc ; 5(23)2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28596390

ABSTRACT

Members of the genus Halomonas are physiologically versatile and harbor ecological adaptations enabling the colonization of contrasted environments. We present here the draft genome of Halomonas lionensis RHS90T, isolated from Mediterranean Sea sediments. Numerous genes related to stress tolerance, DNA repair, or external signal-sensing systems were predicted, which could represent selective advantages of this marine bacterium.

8.
Astrobiology ; 15(11): 998-1029, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26575218

ABSTRACT

UNLABELLED: The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This "punctuated" scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5-3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. KEY WORDS: Mars-Early Earth-Anaerobic chemotrophs-Biosignatures-Astrobiology missions to Mars.


Subject(s)
Exobiology , Mars
9.
FEMS Microbiol Ecol ; 91(5)2015 May.
Article in English | MEDLINE | ID: mdl-25873465

ABSTRACT

Subseafloor sediments represent a large reservoir of organic matter and are inhabited by microbial groups of the three domains of life. Besides impacting the planetary geochemical cycles, the subsurface biosphere remains poorly understood, notably questions related to possible metabolic pathways and selective advantages that may be deployed by buried microorganisms (sporulation, response to stress, dormancy). In order to better understand physiological potentials and possible lifestyles of subseafloor microbial communities, we analyzed two metagenomes from subseafloor sediments collected at 31 mbsf (meters below the sea floor) and 136 mbsf in the Canterbury Basin. Metagenomic phylogenetic and functional diversities were very similar. Phylogenetic diversity was mostly represented by Chloroflexi, Firmicutes and Proteobacteria for Bacteria and by Thaumarchaeota and Euryarchaeota for Archaea. Predicted anaerobic metabolisms encompassed fermentation, methanogenesis and utilization of fatty acids, aromatic and halogenated substrates. Potential processes that may confer selective advantages for subsurface microorganisms included sporulation, detoxication equipment or osmolyte accumulation. Annotation of genomic fragments described the metabolic versatility of Chloroflexi, Miscellaneous Crenarchaeotic Group and Euryarchaeota and showed frequent recombination events within subsurface taxa. This study confirmed that the subseafloor habitat is unique compared to other habitats at the (meta)-genomic level and described physiological potential of still uncultured groups.


Subject(s)
Chloroflexi/genetics , Euryarchaeota/genetics , Geologic Sediments/microbiology , Metagenome/genetics , Proteobacteria/genetics , Biological Evolution , Chloroflexi/classification , Chloroflexi/metabolism , Ecosystem , Euryarchaeota/classification , Euryarchaeota/metabolism , Evolution, Molecular , Genome, Archaeal/genetics , Genome, Bacterial/genetics , New Zealand , Oceans and Seas , Pacific Ocean , Phylogeny , Proteobacteria/classification , Proteobacteria/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics
10.
Res Microbiol ; 165(7): 490-500, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25086262

ABSTRACT

A novel halophilic bacterium, strain RHS90(T), was isolated from marine sediments from the Gulf of Lions, in the Mediterranean Sea. Its metabolic and physiological characteristics were examined under various cultural conditions, including exposure to stressful ones (oligotrophy, high pressure and high concentrations of metals). Based on phylogenetic analysis of the 16S rRNA gene, the strain was found to belong to the genus Halomonas in the class Gammaproteobacteria. Its closest relatives are Halomonas axialensis and Halomonas meridiana (98% similarity). DNA-DNA hybridizations indicated that the novel isolate is genotypically distinct from these species. The DNA G + C content of the strain is 54.4 mol%. The main fatty acids (C18:1ω7c, 2-OH iso-C15:0, C16:0 and/or C19:0 cyclo ω8c), main polar lipids (diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unidentified phosphoglycolipid) and major respiratory quinone (ubiquinone Q9) were determined. The novel isolate is heterotrophic, mesophilic, euryhaline (growth optimum ranging from 2 to 8% w/v NaCl) and is able to grow under stressful conditions. The strain accumulates poly-ß-hydroxyalkanoates granules and compatible solutes. Based on genotypic, chemotaxonomic and phenotypic distinctiveness, this isolate is likely to represent a novel species, for which the name Halomonas lionensis is proposed. The type strain of H. lionensis is RHS90(T) (DSM 25632(T) = CIP 110370(T) = UBOCC 3186(T)).


Subject(s)
Geologic Sediments/microbiology , Halomonas/classification , Halomonas/physiology , Bacterial Typing Techniques , Base Composition , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Halomonas/genetics , Halomonas/isolation & purification , Mediterranean Sea , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/analysis , Phylogeny , Polyhydroxyalkanoates/metabolism , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism
11.
ISME J ; 8(7): 1370-80, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24430485

ABSTRACT

The subsurface realm is colonized by microbial communities to depths of >1000 meters below the seafloor (m.b.sf.), but little is known about overall diversity and microbial distribution patterns at the most profound depths. Here we show that not only Bacteria and Archaea but also Eukarya occur at record depths in the subseafloor of the Canterbury Basin. Shifts in microbial community composition along a core of nearly 2 km reflect vertical taxa zonation influenced by sediment depth. Representatives of some microbial taxa were also cultivated using methods mimicking in situ conditions. These results suggest that diverse microorganisms persist down to 1922 m.b.sf. in the seafloor of the Canterbury Basin and extend the previously known depth limits of microbial evidence (i) from 159 to 1740 m.b.sf. for Eukarya and (ii) from 518 to 1922 m.b.sf. for Bacteria.


Subject(s)
Archaea/genetics , Bacteria/genetics , Geologic Sediments/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Archaea/classification , Bacteria/classification , Biodiversity , Eukaryota/classification , Eukaryota/genetics , Hydrostatic Pressure , New Zealand , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 18S/classification , RNA, Ribosomal, 18S/genetics
12.
Int J Syst Evol Microbiol ; 63(Pt 9): 3301-3306, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23475346

ABSTRACT

A novel Gram-stain-negative, strictly aerobic, heterotrophic bacterium, designated 306(T), was isolated from near-surface (109 cm below the sea floor) sediments of the Gulf of Lions, in the Mediterranean Sea. Strain 306(T) grew at temperatures between 4 and 32 °C (optimum 17-22 °C), from pH 6.5 to 9.0 (optimum 8.0-9.0) and between 0.5 and 6.0% (w/v) NaCl (optimum 2.0%). Its DNA G+C content was 58.8 mol%. On the basis of 16S rRNA gene sequence similarity, the novel isolate belongs to the class Alphaproteobacteria and is related to the genus Phaeobacter. It shares 98.7% 16S rRNA sequence identity with Phaeobacter arcticus, its closest phylogenetic relative. It contained Q-10 as the only respiratory quinone, C(18:1)ω7c and C(16:0) as major fatty acids (>5%) and phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, two unidentified lipids and an aminolipid as polar lipids. The chemotaxonomic data are consistent with the affiliation of strain 306(T) to the genus Phaeobacter. Results of physiological experiments, biochemical tests and DNA-DNA hybridizations (with P. arcticus) indicate that strain 306(T) is genetically and phenotypically distinct from the five species of the genus Phaeobacter with validly published names. Strain 306(T) therefore represents a novel species, for which the name Phaeobacter leonis sp. nov. is proposed. The type strain is 306(T) ( =DSM 25627(T) =CIP 110369(T) =UBOCC 3187(T)).


Subject(s)
Phylogeny , Rhodobacteraceae/classification , Seawater/microbiology , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Heterotrophic Processes , Mediterranean Sea , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/analysis , Water Microbiology
13.
PLoS One ; 7(6): e39648, 2012.
Article in English | MEDLINE | ID: mdl-22745802

ABSTRACT

Among small photosynthetic eukaryotes that play a key role in oceanic food webs, picoplanktonic Mamiellophyceae such as Bathycoccus, Micromonas, and Ostreococcus are particularly important in coastal regions. By using a combination of cell sorting by flow cytometry, whole genome amplification (WGA), and 454 pyrosequencing, we obtained metagenomic data for two natural picophytoplankton populations from the coastal upwelling waters off central Chile. About 60% of the reads of each sample could be mapped to the genome of Bathycoccus strain from the Mediterranean Sea (RCC1105), representing a total of 9 Mbp (sample T142) and 13 Mbp (sample T149) of non-redundant Bathycoccus genome sequences. WGA did not amplify all regions uniformly, resulting in unequal coverage along a given chromosome and between chromosomes. The identity at the DNA level between the metagenomes and the cultured genome was very high (96.3% identical bases for the three larger chromosomes over a 360 kbp alignment). At least two to three different genotypes seemed to be present in each natural sample based on read mapping to Bathycoccus RCC1105 genome.


Subject(s)
Chlorophyta/genetics , Metagenomics/methods , Chile , Molecular Sequence Data , Oceans and Seas , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...