Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Nutr ; 154(3): 875-885, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072152

ABSTRACT

BACKGROUND: The current pediatric practice of monitoring for infantile iron deficiency (ID) via hemoglobin (Hgb) screening at one y of age does not identify preanemic ID nor protect against later neurocognitive deficits. OBJECTIVES: To identify biomarkers of iron-related metabolic alterations in the serum and brain and determine the sensitivity of conventional iron and heme indices for predicting risk of brain metabolic dysfunction using a nonhuman primate model of infantile ID. METHODS: Simultaneous serum iron and RBC indices, and serum and cerebrospinal fluid (CSF) metabolomic profiles were determined in 20 rhesus infants, comparing iron sufficient (IS; N = 10) and ID (N = 10) infants at 2 and 4 mo of age. RESULTS: Reticulocyte hemoglobin (RET-He) was lower at 2 wk in the ID group. Significant IS compared with ID differences in serum iron indices were present at 2 mo, but Hgb and RBC indices differed only at 4 mo (P < 0.05). Serum and CSF metabolomic profiles of the ID and IS groups differed at 2 and 4 mo (P < 0.05). Key metabolites, including homostachydrine and stachydrine (4-5-fold lower at 4 mo in ID group, P < 0.05), were altered in both serum and CSF. Iron indices and RET-He at 2 mo, but not Hgb or other RBC indices, were correlated with altered CSF metabolic profile at 4 mo and had comparable predictive accuracy (area under the receiver operating characteristic curve scores, 0.75-0.80). CONCLUSIONS: Preanemic ID at 2 mo was associated with metabolic alterations in serum and CSF in infant monkeys. Among the RBC indices, only RET-He predicted the future risk of abnormal CSF metabolic profile with a predictive accuracy comparable to serum iron indices. The concordance of homostachydrine and stachydrine changes in serum and CSF indicates their potential use as early biomarkers of brain metabolic dysfunction in infantile ID.


Subject(s)
Anemia, Iron-Deficiency , Brain Diseases , Iron Deficiencies , Animals , Infant , Humans , Child , Anemia, Iron-Deficiency/complications , Anemia, Iron-Deficiency/diagnosis , Macaca mulatta/metabolism , Prognosis , Iron/metabolism , Hemoglobins/metabolism , Brain Diseases/metabolism , Biomarkers , Brain/metabolism
2.
Microorganisms ; 11(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37374982

ABSTRACT

Vaginal and rectal specimens were obtained from cycling, pregnant, and nursing rhesus monkeys to assess pregnancy-related changes in the commensal bacteria in their reproductive and intestinal tracts. Using 16S rRNA gene amplicon sequencing, significant differences were found only in the vagina at mid-gestation, not in the hindgut. To verify the apparent stability in gut bacterial composition at mid-gestation, the experiment was repeated with additional monkeys, and similar results were found with both 16S rRNA gene amplicon and metagenomic sequencing. A follow-up study investigated if bacterial changes in the hindgut might occur later in pregnancy. Gravid females were assessed closer to term and compared to nonpregnant females. By late pregnancy, significant differences in bacterial composition, including an increased abundance of 4 species of Lactobacillus and Bifidobacterium adolescentis, were detected, but without a shift in the overall community structure. Progesterone levels were assessed as a possible hormone mediator of bacterial change. The relative abundance of only some taxa (e.g., Bifidobacteriaceae) were specifically associated with progesterone. In summary, pregnancy changes the microbial profiles in monkeys, but the bacterial diversity in their lower reproductive tract is different from women, and the composition of their intestinal symbionts remains stable until late gestation when several Firmicutes become more prominent.

3.
Dev Psychobiol ; 65(5): e22396, 2023 07.
Article in English | MEDLINE | ID: mdl-37338252

ABSTRACT

There is increasing concern about the potential effects of anesthesia exposure on the developing brain. The effects of relatively brief anesthesia exposures used repeatedly to acquire serial magnetic resonance imaging scans could be examined prospectively in rhesus macaques. We analyzed magnetic resonance diffusion tensor imaging (DTI) of 32 rhesus macaques (14 females, 18 males) aged 2 weeks to 36 months to assess postnatal white matter (WM) maturation. We investigated the longitudinal relationships between each DTI property and anesthesia exposure, taking age, sex, and weight of the monkeys into consideration. Quantification of anesthesia exposure was normalized to account for variation in exposures. Segmented linear regression with two knots provided the best model for quantifying WM DTI properties across brain development as well as the summative effect of anesthesia exposure. The resulting model revealed statistically significant age and anesthesia effects in most WM tracts. Our analysis indicated there were major effects on WM associated with low levels of anesthesia even when repeated as few as three times. Fractional anisotropy values were reduced across several WM tracts in the brain, indicating that anesthesia exposure may delay WM maturation, and highlight the potential clinical concerns with even a few exposures in young children.


Subject(s)
Anesthesia , White Matter , Male , Animals , Female , White Matter/diagnostic imaging , Macaca mulatta , Diffusion Tensor Imaging/methods , Brain
4.
Life (Basel) ; 13(6)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37374190

ABSTRACT

(1) The complexity of diabetes and diabetic wound healing remains a therapeutic challenge because proper and systematic wound care and management are essential to prevent chronic microbial infection and mechanical damage to the skin. Marantodes pumilum, locally known as 'Kacip Fatimah', is an herb that has been previously reported to possess anti-inflammatory, analgesic, antinociceptive and antipyretic properties. The current study aims to assess the antioxidant and fibroblast cell migration activities of the fractions eluded from the dichloromethane extract of M. pumilum leaves. (2) The total antioxidant capacity of M. pumilum was assessed using the total proanthocyanidins and phosphomolybdenum assays, while DPPH, nitric oxide, hydrogen peroxide and superoxide free radical scavenging assays were tested to determine the antioxidant potential of M. pumilum. An in vitro scratch wound assay was performed to measure the fibroblast cell migration rate using normal and insulin-resistant human dermal fibroblast cells. (3) All M. pumilum fractions exhibited good antioxidant and fibroblast cell migration activity, among which fractions A and E displayed the greatest effect. (4) M. pumilum's fibroblast migration activity could be attributed to its strong antioxidant properties along with its previously reported properties.

5.
J Nutr ; 153(1): 148-157, 2023 01.
Article in English | MEDLINE | ID: mdl-36913448

ABSTRACT

BACKGROUND: Infantile iron deficiency (ID) causes anemia and compromises neurodevelopment. Current screening relies on hemoglobin (Hgb) determination at 1 year of age, which lacks sensitivity and specificity for timely detection of infantile ID. Low reticulocyte Hgb equivalent (RET-He) indicates ID, but its predictive accuracy relative to conventional serum iron indices is unknown. OBJECTIVES: The objective was to compare diagnostic accuracies of iron indices, red blood cell (RBC) indices, and RET-He for predicting the risk of ID and IDA in a nonhuman primate model of infantile ID. METHODS: Serum iron, total iron binding capacity, unsaturated iron binding capacity, transferrin saturation (TSAT), Hgb, RET-He, and other RBC indices were determined at 2 wk and 2, 4, and 6 mo in breastfed male and female rhesus infants (N = 54). The diagnostic accuracies of RET-He, iron, and RBC indices for predicting the development of ID (TSAT < 20%) and IDA (Hgb < 10 g/dL + TSAT < 20%) were determined using t tests, area under the receiver operating characteristic curve (AUC) analysis, and multiple regression models. RESULTS: Twenty-three (42.6%) infants developed ID and 16 (29.6%) progressed to IDA. All 4 iron indices and RET-He, but not Hgb or RBC indices, predicted future risk of ID and IDA (P < 0.001). The predictive accuracy of RET-He (AUC = 0.78, SE = 0.07; P = 0.003) for IDA was comparable to that of the iron indices (AUC = 0.77-0.83, SE = 0.07; P ≤ 0.002). A RET-He threshold of 25.5 pg strongly correlated with TSAT < 20% and correctly predicted IDA in 10 of 16 infants (sensitivity: 62.5%) and falsely predicted possibility of IDA in only 4 of 38 unaffected infants (specificity: 89.5%). CONCLUSIONS: RET-He is a biomarker of impending ID/IDA in rhesus infants and can be used as a hematological parameter to screen for infantile ID.


Subject(s)
Anemia, Iron-Deficiency , Anemia , Iron Deficiencies , Male , Female , Animals , Reticulocytes/chemistry , Reticulocytes/metabolism , Anemia/metabolism , Hemoglobins/metabolism , Iron/metabolism , Primates/metabolism
6.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770709

ABSTRACT

1. Diabetic chronic wounds, mainly foot ulcers, constitute one of the most common complications of poorly managed diabetes mellitus. The most typical reasons are insufficient glycemic management, latent neuropathy, peripheral vascular disease, and neglected foot care. In addition, it is a common cause of foot osteomyelitis and amputation of the lower extremities. Patients are admitted in larger numbers attributable to chronic wounds compared to any other diabetic disease. In the United States, diabetes is currently the most common cause of non-traumatic amputations. Approximately five percent of diabetics develop foot ulcers, and one percent require amputation. Therefore, it is necessary to identify sources of lead with wound-healing properties. Redox imbalance due to excessive oxidative stress is one of the causes for the development of diabetic wounds. Antioxidants have been shown to decrease the progression of diabetic neuropathy by scavenging ROS, regenerating endogenous and exogenous antioxidants, and reversing redox imbalance. Matrix metalloproteinases (MMPs) play vital roles in numerous phases of the wound healing process. Antioxidant and fibroblast cell migration activity of Marantodes pumilum (MP) crude extract has previously been reported. Through their antioxidant, epithelialization, collagen synthesis, and fibroblast migration activities, the authors hypothesise that naringin, eicosane and octacosane identified in the MP extract may have wound-healing properties. 2. The present study aims to identify the bioactive components present in the dichloromethane (DCM) extract of M. pumilum and evaluate their antioxidant and wound healing activity. Bioactive components were identified using LCMS, HPTLC and GCMS. Excision wound on STZ-induced diabetic rat model, human dermal fibroblast (HDF) cell line and colorimetric antioxidant assays were used to evaluate wound healing and antioxidant activities, respectively. Molecular docking and pkCMS software would be utilised to predict binding energy and affinity, as well as ADME parameters. 3. Naringin (NAR), eicosane (EIC), and octacosane (OCT) present in MP displayed antioxidant action and wound excision closure. Histological examination HDF cell line demonstrates epithelialization, collagen production, fibroblast migration, polymorphonuclear leukocyte migration (PNML), and fibroblast movement. The results of molecular docking indicate a substantial attraction and contact between MMPs. pkCMS prediction indicates inadequate blood-brain barrier permeability, low toxicity, and absence of hepatotoxicity. 4. Wound healing properties of (NEO) naringin, eicosane and octacosane may be the result of their antioxidant properties and possible interactions with MMP.


Subject(s)
Diabetic Foot , Humans , Rats , Animals , Diabetic Foot/drug therapy , Antioxidants/pharmacology , Molecular Docking Simulation , Wound Healing , Collagen , Matrix Metalloproteinases
7.
Community Dent Oral Epidemiol ; 51(5): 738-745, 2023 10.
Article in English | MEDLINE | ID: mdl-35430737

ABSTRACT

OBJECTIVES: Oral health behaviour is a learning process that begins in the early years of an individual's life. The aim of this study was to evaluate the associations between demographic, socioeconomic, and psychosocial factors and oral health behaviours during the transition period from childhood to adolescence. METHODS: This was a cohort study with a follow-up of 7 years. The baseline assessment occurred in 2010 with a random sample of 639 preschool children from southern Brazil. Demographic, socioeconomic and psychosocial oral health conditions were assessed at baseline. Oral health habit variables were collected at follow-up and included questions regarding dental care and oral hygiene behaviours. Structural equation modelling was performed to assess the direct and indirect relationships between predictors at baseline in oral health behaviours at follow-up. RESULTS: A total of 449 children were re-examined at follow-up (70.3% cohort retention rate). Factors directly related to poorer oral health behaviours (lower use of dental services, dental visits for emergency reasons and lower frequency of toothbrushing) were lower household income, lower maternal education, lower frequency of visits to neighbours or friends, and male sex. Considering indirect pathways, the household income and maternal education at baseline influenced oral health behaviours at follow-up via visits to neighbours or friends. CONCLUSIONS: Our findings suggest that household income, maternal education and social capital play an important role in the development of oral health behaviours during the transition from childhood to adolescence. Acquisition of healthy oral behaviours is an important factor to consider in childhood. With this knowledge, public health policies can be developed to intervene in specific causal factors and improve oral health during this transitional period.


Subject(s)
Dental Caries , Oral Health , Humans , Child, Preschool , Male , Adolescent , Cohort Studies , Latent Class Analysis , Toothbrushing , Health Behavior , Dental Caries/etiology
8.
Data Brief ; 45: 108591, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36164307

ABSTRACT

The effects of early-life iron deficiency anemia (IDA) extend past the blood and include both short- and long-term adverse effects on many tissues including the brain. Prior to IDA, iron deficiency (ID) can cause similar tissue effects, but a sensitive biomarker of iron-dependent brain health is lacking. To determine serum and CSF biomarkers of ID-induced metabolic dysfunction we performed proteomic and metabolomic analysis of serum and CSF at 4- and 6- months from a nonhuman primate model of infantile IDA. LC/MS/MS analyses identified a total of 227 metabolites and 205 proteins in serum. In CSF, we measured 210 metabolites and 1,560 proteins. Data were either processed from a Q-Exactive (Thermo Scientific, Waltham, MA) through Progenesis QI with accurate mass and retention time comparisons to a proprietary small molecule database and Metlin or with raw files imported directly from a Fusion Orbitrap (Thermo Scientific, Waltham, MA) through Sequest in Proteome Discoverer 2.4.0.305 (Thermo Scientific, Waltham, MA) with peptide matches through the latest Rhesus Macaque HMDB database. Metabolite and protein identifiers, p-values, and q-values were utilized for molecular pathway analysis with Ingenuity Pathways Analysis (IPA). We applied multiway distance weighted discrimination (DWD) to identify a weighted sum of the features (proteins or metabolites) that distinguish ID from IS at 4-months (pre-anemic period) and 6-months of age (anemic).

9.
J Tradit Complement Med ; 12(3): 225-234, 2022 May.
Article in English | MEDLINE | ID: mdl-35493310

ABSTRACT

Spirulina (blue-green algae) contains a wide range of nutrients with medicinal properties which include ß-carotene, chromium, and moderate amounts of vitamins B12. This study aims to determine the preventive effect of spirulina against bone fragility linked to type 2 diabetes mellitus. Thirty Sprague-Dawley rats were divided into five groups (n = 6) and diabetes was induced using streptozocin. Rats with a plasma glucose level of 10 mmol/L and above were orally treated for twelve weeks with either a single dose of spirulina, metformin, or a combined dose of spirulina + metformin per day. After the treatment, blood and bones were taken for biochemical analysis, three-dimensional imaging, 3-point biomechanical analysis, histology imaging and gene expression using qPCR. Results showed that diabetes induction and treatment with metformin caused destruction in the trabecular microarchitecture of the femur bone, reduction in serum bone marker and expression of bone formation marker genes in the experimental rats. Spirulina supplementation showed improved trabecular microarchitecture with a denser trabecular network, increased 25-OH vitamin D levels, and lowered the level of phosphate and calcium in the serum. Biomechanical tests revealed increased maximum force, stress strain, young modulus and histology images showed improvement in regular mesh and an increase in osteoblasts and osteocytes. There was an increase in the expression of bone formation marker osteocalcin. The results suggest that spirulina supplementation was more effective at improving bone structural strength and stiffness in diabetic rats compared to metformin. Spirulina may be able to prevent T2DM-related brittle bone, lowering the risk of fracture.

10.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R486-R500, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35271351

ABSTRACT

The effects of iron deficiency (ID) during infancy extend beyond the hematologic compartment and include short- and long-term adverse effects on many tissues including the brain. However, sensitive biomarkers of iron-dependent brain health are lacking in humans. To determine whether serum and cerebrospinal fluid (CSF) biomarkers of ID-induced metabolic dysfunction are concordant in the pre/early anemic stage of ID before anemia in a nonhuman primate model of infantile iron deficiency anemia (IDA). ID (n = 7), rhesus infants at 4 mo (pre-anemic period) and 6 mo of age (anemic) were examined. Hematological, metabolomic, and proteomic profiles were generated via HPLC/MS at both time points to discriminate serum biomarkers of ID-induced brain metabolic dysfunction. We identified 227 metabolites and 205 proteins in serum. Abnormalities indicating altered liver function, lipid dysregulation, and increased acute phase reactants were present in ID. In CSF, we measured 210 metabolites and 1,560 proteins with changes in ID infants indicative of metabolomic and proteomic differences indexing disrupted synaptogenesis. Systemic and CSF proteomic and metabolomic changes were present and concurrent in the pre-anemic and anemic periods. Multiomic serum and CSF profiling uncovered pathways disrupted by ID in both the pre-anemic and anemic stages of infantile IDA, including evidence for hepatic dysfunction and activation of acute phase response. Parallel changes observed in serum and CSF potentially provide measurable serum biomarkers of ID that reflect at-risk brain processes prior to progression to clinical anemia.


Subject(s)
Anemia, Iron-Deficiency , Anemia , Iron Deficiencies , Anemia, Iron-Deficiency/cerebrospinal fluid , Animals , Biomarkers , Humans , Iron , Macaca mulatta , Proteomics
11.
J Surg Res ; 267: 336-341, 2021 11.
Article in English | MEDLINE | ID: mdl-34186310

ABSTRACT

BACKGROUND: Microbiome research has expanded to consider contributions of microbial kingdoms beyond bacteria, including fungi (i.e., the mycobiome). However, optimal specimen handling protocols are varied, including uncertainty of how enzymes utilized to facilitate fungal DNA recovery may interfere with bacterial microbiome sequencing from the same samples. METHODS: With Institutional Animal Care and Use Committee approval, fecal samples were obtained from 20 rhesus macaques (10 males, 10 females; Macaca mulatta). DNA was extracted using commercially available kits, with or without lyticase enzyme treatment. 16S ribosomal RNA (bacterial) and Internal Transcribed Spacer (ITS; fungal) sequencing was performed on the Illumina MiSeq platform. Bioinformatics analysis was performed using Qiime and Calypso. RESULTS: Inclusion of lyticase in the sample preparation pipeline significantly increased usable fungal ITS reads, community alpha diversity, and enhanced detection of numerous fungal genera that were otherwise poorly or not detected in primate fecal samples. Bacterial 16S ribosomal RNA amplicons obtained from library preparation were statistically unchanged by the presence of lyticase. CONCLUSIONS: We demonstrate inclusion of the enzyme lyticase for fungal cell wall digestion markedly enhances mycobiota detection while maintaining fidelity of microbiome identification and community features in non-human primates. In restricted sample volumes, as are common in limited human samples, use of single sample DNA isolation will facilitate increased rigor and controlled approaches in future work.


Subject(s)
Microbiota , Mycobiome , Animals , Female , Glucan Endo-1,3-beta-D-Glucosidase , Macaca mulatta/genetics , Male , Multienzyme Complexes , Mycobiome/genetics , Peptide Hydrolases , RNA, Ribosomal, 16S/genetics
12.
FASEB J ; 35(6): e21682, 2021 06.
Article in English | MEDLINE | ID: mdl-34042210

ABSTRACT

Over the last decade, multiple studies have highlighted the essential role of gut microbiota in normal infant development. However, the sensitive periods during which gut bacteria are established and become associated with physical growth and maturation of the brain are still poorly defined. This study tracked the assembly of the intestinal microbiota during the initial nursing period, and changes in community structure after transitioning to solid food in infant rhesus monkeys (Macaca mulatta). Anthropometric measures and rectal swabs were obtained at 2-month intervals across the first year of life and bacterial taxa identified by 16S rRNA gene sequencing. At 12 months of age, total brain and cortical regions volumes were quantified through structural magnetic resonance imaging. The bacterial community structure was dynamic and characterized by discrete maturational phases, reflecting an early influence of breast milk and the later transition to solid foods. Commensal microbial taxa varied with diet similar to findings in other animals and human infants; however, monkeys differ in the relative abundances of Lactobacilli and Bifidobacteria, two taxa predominant in breastfed human infants. Higher abundances of taxa in the phylum Proteobacteria during nursing were predictive of slower growth trajectories and smaller brain volumes at one year of age. Our findings define discrete phases of microbial succession in infant monkeys and suggest there may be a critical period during nursing when endogenous differences in certain taxa can shift the community structure and influence the pace of physical growth and the maturational trajectory of the brain.


Subject(s)
Animals, Newborn/growth & development , Brain/physiology , Gastrointestinal Microbiome , Milk/microbiology , Proteobacteria/physiology , Animals , Brain/microbiology , Diet , Feces/microbiology , Female , Macaca mulatta , Male
13.
Front Hum Neurosci ; 15: 624107, 2021.
Article in English | MEDLINE | ID: mdl-33716694

ABSTRACT

A high percent of oxidative energy metabolism is needed to support brain growth during infancy. Unhealthy diets and limited nutrition, as well as other environmental insults, can compromise these essential developmental processes. In particular, iron deficiency anemia (IDA) has been found to undermine both normal brain growth and neurobehavioral development. Even moderate ID may affect neural maturation because when iron is limited, it is prioritized first to red blood cells over the brain. A primate model was used to investigate the neural effects of a transient ID and if deficits would persist after iron treatment. The large size and postnatal growth of the monkey brain makes the findings relevant to the metabolic and iron needs of human infants, and initiating treatment upon diagnosis of anemia reflects clinical practice. Specifically, this analysis determined whether brain maturation would still be compromised at 1 year of age if an anemic infant was treated promptly once diagnosed. The hematology and iron status of 41 infant rhesus monkeys was screened at 2-month intervals. Fifteen became ID; 12 met clinical criteria for anemia and were administered iron dextran and B vitamins for 1-2 months. MRI scans were acquired at 1 year. The volumetric and diffusion tensor imaging (DTI) measures from the ID infants were compared with monkeys who remained continuously iron sufficient (IS). A prior history of ID was associated with smaller total brain volumes, driven primarily by significantly less total gray matter (GM) and smaller GM volumes in several cortical regions. At the macrostructual level, the effect on white matter volumes (WM) was not as overt. However, DTI analyses of WM microstructure indicated two later-maturating anterior tracts were negatively affected. The findings reaffirm the importance of iron for normal brain development. Given that brain differences were still evident even after iron treatment and following recovery of iron-dependent hematological indices, the results highlight the importance of early detection and preemptive supplementation to limit the neural consequences of ID.

14.
Am J Clin Nutr ; 113(4): 915-923, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33740040

ABSTRACT

BACKGROUND: The effects of infantile iron deficiency anemia (IDA) extend beyond hematological indices and include short- and long-term adverse effects on multiple cells and tissues. IDA is associated with an abnormal serum metabolomic profile, characterized by altered hepatic metabolism, lowered NAD flux, increased nucleoside levels, and a reduction in circulating dopamine levels. OBJECTIVES: The objective of this study was to determine whether the serum metabolomic profile is normalized after rapid correction of IDA using iron dextran injections. METHODS: Blood was collected from iron-sufficient (IS; n = 10) and IDA (n = 12) rhesus infants at 6 months of age. IDA infants were then administered iron dextran and vitamin B via intramuscular injections at weekly intervals for 2 to 8 weeks. Their hematological and metabolomic statuses were evaluated following treatment and compared with baseline and a separate group of age-matched IS infants (n = 5). RESULTS: Serum metabolomic profiles assessed at baseline and after treatment via HPLC/MS using isobaric standards identified 654 quantifiable metabolites. At baseline, 53 metabolites differed between IS and IDA infants. Iron treatment restored traditional hematological indices, including hemoglobin and mean corpuscular volume, into the normal range, but the metabolite profile in the IDA group after iron treatment was markedly altered, with 323 metabolites differentially expressed when compared with an infant's own baseline profile. CONCLUSIONS: Rapid correction of IDA with iron dextran resulted in extensive metabolic changes across biochemical pathways indexing the liver function, bile acid release, essential fatty acid production, nucleoside release, and several neurologically important metabolites. The results highlight the importance of a cautious approach when developing a route and regimen of iron repletion to treat infantile IDA.


Subject(s)
Anemia, Iron-Deficiency/drug therapy , Disease Models, Animal , Iron-Dextran Complex/therapeutic use , Macaca mulatta , Metabolome/drug effects , Animals , Bile Acids and Salts/metabolism , Fatty Acids, Essential/metabolism , Injections, Intramuscular , Liver/metabolism , Nucleosides/metabolism
15.
Mol Nutr Food Res ; 65(8): e2001018, 2021 04.
Article in English | MEDLINE | ID: mdl-33599094

ABSTRACT

SCOPE: Iron deficiency (ID) compromises the health of infants worldwide. Although readily treated with iron, concerns remain about the persistence of some effects. Metabolic and gut microbial consequences of infantile ID were investigated in juvenile monkeys after natural recovery (pID) from iron deficiency or post-treatment with iron dextran and B vitamins (pID+Fe). METHODS AND RESULTS: Metabolomic profiling of urine and plasma is conducted with 1 H nuclear magnetic resonance (NMR) spectroscopy. Gut microbiota are characterized from rectal swabs by amplicon sequencing of the 16S rRNA gene. Urinary metabolic profiles of pID monkeys significantly differed from pID+Fe and continuously iron-sufficient controls (IS) with higher maltose and lower amounts of microbial-derived metabolites. Persistent differences in energy metabolism are apparent from the plasma metabolic phenotypes with greater reliance on anaerobic glycolysis in pID monkeys. Microbial profiling indicated higher abundances of Methanobrevibacter, Lachnobacterium, and Ruminococcus in pID monkeys and any history of ID resulted in a lower Prevotella abundance compared to the IS controls. CONCLUSIONS: Lingering metabolic and microbial effects are found after natural recovery from ID. These long-term biochemical derangements are not present in the pID+Fe animals emphasizing the importance of the early detection and treatment of early-life ID to ameliorate its chronic metabolic effects.


Subject(s)
Anemia, Iron-Deficiency/metabolism , Anemia, Iron-Deficiency/microbiology , Gastrointestinal Microbiome/physiology , Iron-Dextran Complex/pharmacology , Anemia, Iron-Deficiency/drug therapy , Animals , Animals, Newborn , Blood Chemical Analysis , Disease Models, Animal , Female , Gastrointestinal Microbiome/drug effects , Macaca mulatta , Metabolome , RNA, Ribosomal, 16S , Urine/chemistry
16.
Br J Anaesth ; 126(4): 845-853, 2021 04.
Article in English | MEDLINE | ID: mdl-33549320

ABSTRACT

BACKGROUND: Non-human primates are commonly used in neuroimaging research for which general anaesthesia or sedation is typically required for data acquisition. In this analysis, the cumulative effects of exposure to ketamine, Telazol® (tiletamine and zolazepam), and the inhaled anaesthetic isoflurane on early brain development were evaluated in two independent cohorts of typically developing rhesus macaques. METHODS: Diffusion MRI scans were analysed from 43 rhesus macaques (20 females and 23 males) at either 12 or 18 months of age from two separate primate colonies. RESULTS: Significant, widespread reductions in fractional anisotropy with corresponding increased axial, mean, and radial diffusivity were observed across the brain as a result of repeated anaesthesia exposures. These effects were dose dependent and remained after accounting for age and sex at time of exposure in a generalised linear model. Decreases of up to 40% in fractional anisotropy were detected in some brain regions. CONCLUSIONS: Multiple exposures to commonly used anaesthetics were associated with marked changes in white matter microstructure. This study is amongst the first to examine clinically relevant anaesthesia exposures on the developing primate brain. It will be important to examine if, or to what degree, the maturing brain can recover from these white matter changes.


Subject(s)
Anesthesia, General/adverse effects , Brain/drug effects , Brain/diagnostic imaging , White Matter/drug effects , White Matter/diagnostic imaging , Animals , Animals, Newborn , Brain/metabolism , Diffusion Tensor Imaging/trends , Female , Macaca mulatta , Male
17.
Trends Dev Biol ; 14: 63-72, 2021.
Article in English | MEDLINE | ID: mdl-35431473

ABSTRACT

A gestation length of normal duration and natural delivery at term are considered to be important indicators of a healthy pregnancy, especially given the potentially adverse consequences for neonates of being born premature. While many have assessed the factors influencing gestation length in humans, and there has been considerable interest in the pregnancy duration of domesticated farm animals, this topic has not been re-assessed recently in rhesus monkeys, the most commonly used primate in biomedical research. In older articles, it's gestation length was typically reported to be 165 days, although most authors acknowledged that viable pregnancies could occur out to 180 days. Predicting the normal range of acceptable due dates has important veterinary implications for when to intervene in a prolonged pregnancy. Using archival records from a large, established breeding program, gestation lengths and infant birthweights were analyzed for 408 pregnancies across a 25-year period. The potential influence of maternal factors, including age and parity, was assessed. Familial concordance in gestation length within mother-daughter matrilines was examined, as well as similarity in length across repeat pregnancies for 84 multiparous females. Mean duration from mating to delivery was 168.8 days, longer than reported in most but not all previous articles. Many females birthed successfully at a longer duration that might have prompted consideration of a caesarian delivery. Gestation length for an individual female was fairly stable and significantly correlated across multiple pregnancies. There was not a pronounced transgenerational influence on gestation length even though familial propensities for birthing small and large infants were evident in the female descendants. Typical pregnancy lengths and birthweights are provided as reference norms to assist other breeding programs and to enhance our understanding of the natural reproduction of rhesus macaques that still live in many forested and urban locations across South Asia.

18.
Curr Pharm Biotechnol ; 22(2): 288-298, 2021.
Article in English | MEDLINE | ID: mdl-32744968

ABSTRACT

BACKGROUND: Diabetes Mellitus (DM) is characterized by hyperglycemia (high blood glucose levels) which is due to the destruction of insulin-producing ß-cells in the islets of Langerhans in the pancreas. It is associated with oxidative and endoplasmic reticulum stress. The plant alkaloid Palmatine has been previously reported to possess antidiabetic and antioxidant properties as well as other protective properties against kidney and liver tissue damage. OBJECTIVE: Here, we investigated the ability of Palmatine to reduce the up-regulation of chaperone proteins Glucose Regulatory Protein 78 (GRP78), and Calreticulin (CALR) protein in a Streptozotocin (STZ)-induced diabetic rat model. METHODS: Streptozotocin (STZ) induced diabetes in Sprague Dawley rats treated with 2mg/kg of Palmatine for 12 weeks after the elevation of plasma glucose levels above 11mmol/L post-STZ administration. Proteins were extracted from the pancreas after treatment and Two-Dimensional gel electrophoresis (2-DE), PDQuest 2-D analysis software genomic solutions and mass spectrometer were used to analyze differentially expressed protein. Mass Spectrometry (MS/MS), Multidimensional Protein Identification Technology (MudPIT) was used for protein identification. RESULTS: There was an up-regulation of the expression of chaperone proteins CALR and GRP78 and down-regulation of the expression of antioxidant and protection proteins peroxidoxin 4 (Prdx4), protein disulfide isomerase (PDIA2/3), Glutathione-S-Transferase (GSTs), and Serum Albumin (ALB) in non-diabetic rats. Palmatine treatment down-regulated the expression of chaperone proteins CALR and GRP78 and up-regulated the expression of Prdx4, PDIA2/3, GST, and ALB. CONCLUSION: Palmatine may have activated antioxidant proteins, which protected the cells against reactive oxygen species and endoplasmic stress. The result is in consonance with our previous report on Palmatine.


Subject(s)
Berberine Alkaloids/therapeutic use , Calreticulin/antagonists & inhibitors , Diabetes Mellitus, Experimental/drug therapy , Heat-Shock Proteins/antagonists & inhibitors , Hypoglycemic Agents/therapeutic use , Up-Regulation/drug effects , Animals , Berberine Alkaloids/pharmacology , Blood Glucose/drug effects , Blood Glucose/metabolism , Calreticulin/biosynthesis , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/biosynthesis , Hypoglycemic Agents/pharmacology , Male , Rats , Rats, Sprague-Dawley , Streptozocin/toxicity , Tandem Mass Spectrometry/methods , Up-Regulation/physiology
19.
Am J Primatol ; 82(1): e23085, 2020 01.
Article in English | MEDLINE | ID: mdl-31875991

ABSTRACT

Rhesus monkeys are typically seasonal breeders but can be induced to extend the timing of their mating and births under captive conditions. The following analyses evaluated the potential impact of extending their pregnancies and deliveries year-round. Birth records from a large breeding colony housed in an indoor facility with a constant 14-hr light/10-hr dark cycle were analyzed across 25 years to examine seasonal trends in monkeys that mated in one of two ways: spontaneous in social groups or with a scheduled, timed-mating protocol. The dates of delivery and birth weights for 2,084 infants were used in these analyses. Younger nulliparous females mating in social groups evinced a clear seasonal peak when birthing their first infant. However, older females, both primiparous and multiparous, could be bred continuously, which enable the birth of infants in every month of the year. Based on the live birth rate, infant birth weights, high survival rates, and the normal sex ratio of infants birthed year-round, there were no adverse effects of breeding rhesus monkeys in this way. The continuous availability of infant births can be very advantageous for many types of research programs.


Subject(s)
Breeding/methods , Macaca mulatta/physiology , Pregnancy/physiology , Animal Husbandry/methods , Animals , Birth Rate , Birth Weight , Female , Male , Seasons , Sex Ratio
20.
J Nutr ; 150(4): 685-693, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31722400

ABSTRACT

BACKGROUND: Iron deficiency is the most common nutrient deficiency in human infants aged 6 to 24 mo, and negatively affects many cellular metabolic processes, including energy production, electron transport, and oxidative degradation of toxins. There can be persistent influences on long-term metabolic health beyond its acute effects. OBJECTIVES: The objective was to determine how iron deficiency in infancy alters the serum metabolomic profile and to test whether these effects persist after the resolution of iron deficiency in a nonhuman primate model of spontaneous iron deficiency. METHODS: Blood was collected from naturally iron-sufficient (IS; n = 10) and iron-deficient (ID; n = 10) male and female infant rhesus monkeys (Macaca mulatta) at 6 mo of age. Iron deficiency resolved without intervention upon feeding of solid foods, and iron status was re-evaluated at 12 mo of age from the IS and formerly ID monkeys using hematological and other indices; sera were metabolically profiled using HPLC/MS and GC/MS with isobaric standards for identification and quantification at both time points. RESULTS: A total of 413 metabolites were measured, with differences in 40 metabolites identified between IS and ID monkeys at 6 mo (P$\le $ 0.05). At 12 mo, iron-related hematological parameters had returned to normal, but the formerly ID infants remained metabolically distinct from the age-matched IS infants, with 48 metabolites differentially expressed between the groups. Metabolomic profiling indicated altered liver metabolites, differential fatty acid production, increased serum uridine release, and atypical bile acid production in the ID monkeys. CONCLUSIONS: Pathway analyses of serum metabolites provided evidence of a hypometabolic state, altered liver function, differential essential fatty acid production, irregular uracil metabolism, and atypical bile acid production in ID infants. Many metabolites remained altered after the resolution of ID, suggesting long-term effects on metabolic health.


Subject(s)
Metabolome/physiology , Monkey Diseases/blood , Animals , Bile Acids and Salts/biosynthesis , Diet/veterinary , Fatty Acids/biosynthesis , Female , Iron Deficiencies , Liver/physiopathology , Macaca mulatta , Male , Metabolomics/methods , Prospective Studies , Uracil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...