Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Commun ; 14(1): 2250, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37080991

ABSTRACT

Appendicular lean mass (ALM) associates with mobility and bone mineral density (BMD). While associations between gut microbiota composition and ALM have been reported, previous studies rely on relatively small sample sizes. Here, we determine the associations between prevalent gut microbes and ALM in large discovery and replication cohorts with information on relevant confounders within the population-based Norwegian HUNT cohort (n = 5196, including women and men). We show that the presence of three bacterial species - Coprococcus comes, Dorea longicatena, and Eubacterium ventriosum - are reproducibly associated with higher ALM. When combined into an anabolic species count, participants with all three anabolic species have 0.80 kg higher ALM than those without any. In an exploratory analysis, the anabolic species count is positively associated with femoral neck and total hip BMD. We conclude that the anabolic species count may be used as a marker of ALM and BMD. The therapeutic potential of these anabolic species to prevent sarcopenia and osteoporosis needs to be determined.


Subject(s)
Osteoporosis , Sarcopenia , Male , Humans , Female , Absorptiometry, Photon , Body Composition , Bone Density , Osteoporosis/complications
3.
iScience ; 24(11): 103196, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34746691

ABSTRACT

The rs58542926C >T (E167K) variant of the transmembrane 6 superfamily member 2 gene (TM6SF2) is associated with increased risks for nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). Nevertheless, the role of the TM6SF2 rs58542926 variant in glucose metabolism is poorly understood. We performed a sex-stratified analysis of the association between the rs58542926C >T variant and T2D in multiple cohorts. The E167K variant was significantly associated with T2D, especially in males. Using an E167K knockin (KI) mouse model, we found that male but not the female KI mice exhibited impaired glucose tolerance. As an ER membrane protein, TM6SF2 was found to interact with inositol-requiring enzyme 1 α (IRE1α), a primary ER stress sensor. The male Tm6sf2 KI mice exhibited impaired IRE1α signaling in the liver. In conclusion, the E167K variant of TM6SF2 is associated with glucose intolerance primarily in males, both in humans and mice.

4.
Int J Epidemiol ; 50(5): 1569-1579, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34151951

ABSTRACT

BACKGROUND: The causal nature of the observed associations between serum lipids and apolipoproteins and kidney function are unclear. METHODS: Using two-sample and multivariable Mendelian randomization (MR), we examined the causal effects of serum lipids and apolipoproteins on kidney function, indicated by the glomerular-filtration rate estimated using creatinine (eGFRcrea) or cystatin C (eGFRcys) and the urinary albumin-to-creatinine ratio (UACR). We obtained lipid- and apolipoprotein-associated genetic variants from the Global Lipids Genetics Consortium (n = 331 368) and UK Biobank (n = 441 016), respectively, and kidney-function markers from the Trøndelag Health Study (HUNT; n = 69 736) and UK Biobank (n = 464 207). The reverse causal direction was examined using variants associated with kidney-function markers selected from recent genome-wide association studies. RESULTS: There were no strong associations between genetically predicted lipid and apolipoprotein levels with kidney-function markers. Some, but inconsistent, evidence suggested a weak association of higher genetically predicted atherogenic lipid levels [indicated by low-density lipoprotein cholesterol (LDL-C), triglycerides and apolipoprotein B] with increased eGFR and UACR. For high-density lipoprotein cholesterol (HDL-C), results differed between eGFRcrea and eGFRcys, but neither analysis suggested substantial effects. We found no clear evidence of a reverse causal effect of eGFR on lipid or apolipoprotein traits, but higher UACR was associated with higher LDL-C, triglyceride and apolipoprotein B levels. CONCLUSION: Our MR estimates suggest that serum lipid and apolipoprotein levels do not cause substantial changes in kidney function. A possible weak effect of higher atherogenic lipids on increased eGFR and UACR warrants further investigation. Processes leading to higher UACR may lead to more atherogenic lipid levels.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Apolipoproteins/genetics , Humans , Kidney , Lipids , Random Allocation , Triglycerides
5.
Gut ; 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33888516

ABSTRACT

OBJECTIVE: Haemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date. DESIGN: We conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry. Using GWAS summary statistics, we performed multiple genetic correlation analyses between HEM and other traits as well as calculated HEM polygenic risk scores (PRS) and evaluated their translational potential in independent datasets. Using functional annotation of GWAS results, we identified HEM candidate genes, which differential expression and coexpression in HEM tissues were evaluated employing RNA-seq analyses. The localisation of expressed proteins at selected loci was investigated by immunohistochemistry. RESULTS: We demonstrate modest heritability and genetic correlation of HEM with several other diseases from the GI, neuroaffective and cardiovascular domains. HEM PRS validated in 180 435 individuals from independent datasets allowed the identification of those at risk and correlated with younger age of onset and recurrent surgery. We identified 102 independent HEM risk loci harbouring genes whose expression is enriched in blood vessels and GI tissues, and in pathways associated with smooth muscles, epithelial and endothelial development and morphogenesis. Network transcriptomic analyses highlighted HEM gene coexpression modules that are relevant to the development and integrity of the musculoskeletal and epidermal systems, and the organisation of the extracellular matrix. CONCLUSION: HEM has a genetic component that predisposes to smooth muscle, epithelial and connective tissue dysfunction.

6.
Circulation ; 142(17): 1633-1646, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32981348

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is an important cause of cardiovascular mortality; however, its genetic determinants remain incompletely defined. In total, 10 previously identified risk loci explain a small fraction of AAA heritability. METHODS: We performed a genome-wide association study in the Million Veteran Program testing ≈18 million DNA sequence variants with AAA (7642 cases and 172 172 controls) in veterans of European ancestry with independent replication in up to 4972 cases and 99 858 controls. We then used mendelian randomization to examine the causal effects of blood pressure on AAA. We examined the association of AAA risk variants with aneurysms in the lower extremity, cerebral, and iliac arterial beds, and derived a genome-wide polygenic risk score (PRS) to identify a subset of the population at greater risk for disease. RESULTS: Through a genome-wide association study, we identified 14 novel loci, bringing the total number of known significant AAA loci to 24. In our mendelian randomization analysis, we demonstrate that a genetic increase of 10 mm Hg in diastolic blood pressure (odds ratio, 1.43 [95% CI, 1.24-1.66]; P=1.6×10-6), as opposed to systolic blood pressure (odds ratio, 1.06 [95% CI, 0.97-1.15]; P=0.2), likely has a causal relationship with AAA development. We observed that 19 of 24 AAA risk variants associate with aneurysms in at least 1 other vascular territory. A 29-variant PRS was strongly associated with AAA (odds ratioPRS, 1.26 [95% CI, 1.18-1.36]; PPRS=2.7×10-11 per SD increase in PRS), independent of family history and smoking risk factors (odds ratioPRS+family history+smoking, 1.24 [95% CI, 1.14-1.35]; PPRS=1.27×10-6). Using this PRS, we identified a subset of the population with AAA prevalence greater than that observed in screening trials informing current guidelines. CONCLUSIONS: We identify novel AAA genetic associations with therapeutic implications and identify a subset of the population at significantly increased genetic risk of AAA independent of family history. Our data suggest that extending current screening guidelines to include testing to identify those with high polygenic AAA risk, once the cost of genotyping becomes comparable with that of screening ultrasound, would significantly increase the yield of current screening at reasonable cost.


Subject(s)
Aortic Aneurysm, Abdominal/genetics , Humans , Veterans
7.
Cephalalgia ; 40(6): 625-634, 2020 05.
Article in English | MEDLINE | ID: mdl-32056457

ABSTRACT

BACKGROUND: Variation in mitochondrial DNA (mtDNA) has been indicated in migraine pathogenesis, but genetic studies to date have focused on candidate variants, with sparse findings. We aimed to perform the first mitochondrial genome-wide association study of migraine, examining both single variants and mitochondrial haplogroups. METHODS: In total, 71,860 participants from the population-based Nord-Trøndelag Health Study were genotyped. We excluded samples not passing quality control for nuclear genotypes, in addition to samples with low call rate and closely maternally related. We analysed 775 mitochondrial DNA variants in 4021 migraine cases and 14,288 headache-free controls, using logistic regression. In addition, we analysed 3831 cases and 13,584 controls who could be reliably assigned to a mitochondrial haplogroup. Lastly, we attempted to replicate previously reported mitochondrial DNA candidate variants. RESULTS: Neither of the mitochondrial variants or haplogroups were associated with migraine. In addition, none of the previously reported mtDNA candidate variants replicated in our data. CONCLUSIONS: Our findings do not support a major role of mitochondrial genetic variation in migraine pathophysiology, but a larger sample is needed to detect rare variants and future studies should also examine heteroplasmic variation, epigenetic changes and copy-number variation.


Subject(s)
DNA, Mitochondrial/genetics , Genome-Wide Association Study , Migraine Disorders/genetics , Genetic Variation , Genotype , Humans , Norway
8.
Mol Psychiatry ; 25(9): 2047-2057, 2020 09.
Article in English | MEDLINE | ID: mdl-30116028

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention Deficit Disorder with Hyperactivity/genetics , Exome/genetics , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Humans , Pedigree , Exome Sequencing
9.
Int J Epidemiol ; 48(5): 1438-1446, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31074779

ABSTRACT

BACKGROUND: Smoking is an important cause of mortality and recent studies have suggested that even low-intensity smoking might be associated with increased mortality. Still, smoking is associated with lower socio-economic status as well as other potential risk factors, and disease onset might motivate smoking cessation, thus residual confounding and reverse causality might bias results. We aimed to assess the evidence of a causal relationship between smoking intensity and cause-specific as well as all-cause-mortality using Mendelian randomization analyses. METHODS: We included 56 019 participants from the Norwegian HUNT2 Study and 337 103 participants from UK Biobank, linked to national registry data on causes of death. We estimated associations of self-reported smoking as well as the genetic variant rs1051730 as an instrument for smoking intensity with all-cause and cause-specific mortality. We subsequently meta-analysed the results from the two cohorts. RESULTS: Each effect allele of the rs1051730 was associated with a 9% increased hazard of all-cause mortality [95% confidence interval (CI) 6-11] among ever smokers. Effect alleles were also associated with death by neoplasms [hazard ratio (HR) 1.11, 95% CI 1.06-1.15], circulatory diseases (HR 1.06, 95% CI 1.01-1.11) and respiratory diseases (HR 1.15, 95% CI 1.05-1.26) among ever smokers. The association was stronger among ever than never smokers for all-cause mortality (p < 0.001), neoplasms (p = 0.001) and respiratory diseases (p = 0.038). CONCLUSIONS: Our results indicate a causal effect of smoking intensity on all-cause mortality and death by neoplasms and respiratory diseases. There was weaker evidence of a causal effect of smoking intensity on death by circulatory diseases.


Subject(s)
Cause of Death , Tobacco Smoking/epidemiology , Adult , Aged , Aged, 80 and over , Alleles , Cardiovascular Diseases/mortality , Causality , Databases, Factual , Dose-Response Relationship, Drug , Female , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Neoplasms/mortality , Norway/epidemiology , Polymorphism, Single Nucleotide , Respiratory Tract Diseases/mortality , Risk Factors , Socioeconomic Factors , Tobacco Smoking/mortality , United Kingdom/epidemiology
11.
Nat Genet ; 51(2): 237-244, 2019 02.
Article in English | MEDLINE | ID: mdl-30643251

ABSTRACT

Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures.


Subject(s)
Alcohol Drinking/genetics , Smoking/genetics , Tobacco Use Disorder/genetics , Female , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Phenotype , Risk , Nicotiana/adverse effects
13.
BMJ Open ; 4(10): e006141, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25293386

ABSTRACT

OBJECTIVES: To investigate whether associations of smoking with depression and anxiety are likely to be causal, using a Mendelian randomisation approach. DESIGN: Mendelian randomisation meta-analyses using a genetic variant (rs16969968/rs1051730) as a proxy for smoking heaviness, and observational meta-analyses of the associations of smoking status and smoking heaviness with depression, anxiety and psychological distress. PARTICIPANTS: Current, former and never smokers of European ancestry aged ≥16 years from 25 studies in the Consortium for Causal Analysis Research in Tobacco and Alcohol (CARTA). PRIMARY OUTCOME MEASURES: Binary definitions of depression, anxiety and psychological distress assessed by clinical interview, symptom scales or self-reported recall of clinician diagnosis. RESULTS: The analytic sample included up to 58 176 never smokers, 37 428 former smokers and 32 028 current smokers (total N=127 632). In observational analyses, current smokers had 1.85 times greater odds of depression (95% CI 1.65 to 2.07), 1.71 times greater odds of anxiety (95% CI 1.54 to 1.90) and 1.69 times greater odds of psychological distress (95% CI 1.56 to 1.83) than never smokers. Former smokers also had greater odds of depression, anxiety and psychological distress than never smokers. There was evidence for positive associations of smoking heaviness with depression, anxiety and psychological distress (ORs per cigarette per day: 1.03 (95% CI 1.02 to 1.04), 1.03 (95% CI 1.02 to 1.04) and 1.02 (95% CI 1.02 to 1.03) respectively). In Mendelian randomisation analyses, there was no strong evidence that the minor allele of rs16969968/rs1051730 was associated with depression (OR=1.00, 95% CI 0.95 to 1.05), anxiety (OR=1.02, 95% CI 0.97 to 1.07) or psychological distress (OR=1.02, 95% CI 0.98 to 1.06) in current smokers. Results were similar for former smokers. CONCLUSIONS: Findings from Mendelian randomisation analyses do not support a causal role of smoking heaviness in the development of depression and anxiety.


Subject(s)
Anxiety Disorders/epidemiology , Anxiety/epidemiology , Depression/epidemiology , Depressive Disorder/epidemiology , Smoking/epidemiology , Stress, Psychological/epidemiology , Adolescent , Adult , Aged , Causality , Female , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Nerve Tissue Proteins/genetics , Receptors, Nicotinic/genetics , Smoking/genetics , Young Adult
14.
Nat Genet ; 46(7): 736-41, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24880342

ABSTRACT

We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants BRCA2 p.Lys3326X (rs11571833, odds ratio (OR) = 2.47, P = 4.74 × 10(-20)) and CHEK2 p.Ile157Thr (rs17879961, OR = 0.38, P = 1.27 × 10(-13)). We also showed an association between common variation at 3q28 (TP63, rs13314271, OR = 1.13, P = 7.22 × 10(-10)) and lung adenocarcinoma that had been previously reported only in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants with substantive effects on cancer risk from preexisting genome-wide association study data.


Subject(s)
Adenocarcinoma/genetics , BRCA2 Protein/genetics , Carcinoma, Squamous Cell/genetics , Checkpoint Kinase 2/genetics , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Meta-Analysis as Topic , Prognosis , Risk Factors
15.
Hum Mol Genet ; 21(22): 4980-95, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22899653

ABSTRACT

Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21-6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10(-16)), 6p21 (P = 2.3 × 10(-14)) and 15q25 (P = 2.2 × 10(-63)). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16(INK4A)/p14(ARF)/CDKN2B/p15(INK4B)/ANRIL; rs1333040, P = 3.0 × 10(-7)) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10(-8)). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cancer.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Lung Neoplasms/genetics , Asian People/genetics , Case-Control Studies , Humans , Lung Neoplasms/epidemiology , Polymorphism, Single Nucleotide , Risk , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...