Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 13(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38137925

ABSTRACT

A profile of the microbial safety and hygiene of cheese in central Italy was defined based on an analysis of 1373 cheeses sampled under the Italian National Control Plan for Food Safety spanning the years 2013 to 2020 and tested according to Commission Regulation (EC) No. 2073/2005 (as amended). A total of 97.4% of cheese samples were assessed as being satisfactory for food safety criteria and 80.5% for process hygiene criteria. Staphylococcal enterotoxin was found in 2/414 samples, while Salmonella spp. and Listeria monocytogenes were detected in 15 samples out of 373 and 437, respectively. Escherichia coli and coagulase-positive staphylococci counts were found unsatisfactory in 12/61 and 17/88 cheese samples, respectively. The impact of milking species, milk thermal treatment, and cheese hardness category was considered. A statistically significant association (p < 0.05) was found between milk thermal treatment and the prevalence of coagulase-positive staphylococci and Listeria monocytogenes and between hardness and unsatisfactory levels of Escherichia coli. The data depict a contained public health risk associated with these products and confirm, at the same time, the importance of strict compliance with good hygiene practices during milk and cheese production. These results can assist in bolstering risk analysis and providing insights for food safety decision making.

2.
Antibiotics (Basel) ; 12(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37627712

ABSTRACT

The Arcobacter genus comprises a group of bacteria widely distributed in different habitats that can be spread throughout the food chain. Fluoroquinolones and aminoglycosides represent the most common antimicrobial agents used for the treatment of Arcobacter infections. However, the increasing trend of the antimicrobial resistance of this pathogen leads to treatment failures. Moreover, the test implementation and interpretation are hindered by the lack of reference protocols and standard interpretive criteria. The purpose of our study was to assess the antibiotic resistance pattern of 17 A. butzleri strains isolated in Central Italy from fresh vegetables, sushi, chicken breast, and clinical human samples to provide new and updated information about the antimicrobial resistance epidemiology of this species. Antimicrobial susceptibility testing was carried out by the European Committee on Antimicrobial Susceptibility Testing (EUCAST)'s disc diffusion method. All the strains were multidrug resistant, with 100% resistance to tetracyclines and cefotaxime (third generation cephalosporins). Some differences were noticed among the strains, according to the isolation source (clinical isolates, food of animal origin, or fresh vegetables), with a higher sensitivity to streptomycin detected only in the strains isolated from fresh vegetables. Our data, together with other epidemiological information at the national or European Union (EU) level, may contribute to developing homogeneous breakpoints. However, the high prevalence of resistance to a wide range of antimicrobial classes makes this microorganism a threat to human health and suggests that its monitoring should be considered by authorities designated for food safety.

3.
Foodborne Pathog Dis ; 18(9): 675-682, 2021 09.
Article in English | MEDLINE | ID: mdl-34042505

ABSTRACT

The public health risk posed by Listeria monocytogenes in ready-to-eat (RTE) foods depends on the effectiveness of its control at every stage of the production process and the strain involved. Analytical methods currently in use are limited to the identification/quantification of L. monocytogenes at the species level, without distinguishing virulent from hypovirulent strains. In these products, according to EU Regulation 2073/2005, L. monocytogenes is a mandatory criterion irrespective of strain virulence level. Indeed, this species encompasses a diversity of strains with various pathogenic potential, reflecting genetic heterogeneity of the species itself. Thus, the detection of specific L. monocytogenes virulence genes can be considered an important target in laboratory food analysis to assign different risk levels to foods contaminated by strains carrying different genes. In 2015-2016, a severe invasive listeriosis outbreak occurred in central Italy, leading to the intensification of routine surveillance and strain characterization for virulence genetic markers. A new multiplex real-time polymerase chain reaction targeting main virulence genes has been developed and validated against the enzyme-linked fluorescent assay (ELFA) culture-based method. Results of the improved surveillance program are now reported in this study.


Subject(s)
Listeria monocytogenes , Listeriosis , Food Microbiology , Humans , Italy , Listeria monocytogenes/genetics , Listeriosis/epidemiology , Virulence/genetics
4.
Food Microbiol ; 82: 560-572, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31027819

ABSTRACT

Hákarl is produced by curing of the Greenland shark (Somniosus microcephalus) flesh, which before fermentation is toxic due to the high content of trimethylamine (TMA) or trimethylamine N-oxide (TMAO). Despite its long history of consumption, little knowledge is available on the microbial consortia involved in the fermentation of this fish. In the present study, a polyphasic approach based on both culturing and DNA-based techniques was adopted to gain insight into the microbial species present in ready-to-eat hákarl. To this aim, samples of ready-to-eat hákarl were subjected to viable counting on different selective growth media. The DNA directly extracted from the samples was further subjected to Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and 16S amplicon-based sequencing. Moreover, the presence of Shiga toxin-producing Escherichia coli (STEC) and Pseudomonas aeruginosa was assessed via qualitative real-time PCR assays. pH values measured in the analyzed samples ranged from between 8.07 ±â€¯0.06 and 8.76 ±â€¯0.00. Viable counts revealed the presence of total mesophilic aerobes, lactic acid bacteria and Pseudomonadaceae. Regarding bacteria, PCR-DGGE analysis highlighted the dominance of close relatives of Tissierella creatinophila. For amplicon sequencing, the main operational taxonomic units (OTUs) shared among the data set were Tissierella, Pseudomonas, Oceanobacillus, Abyssivirga and Lactococcus. The presence of Pseudomonas in the analyzed samples supports the hypothesis of a possible role of this microorganism on the detoxification of shark meat from TMAO or TMA during fermentation. Several minor OTUs (<1%) were also detected, including Alkalibacterium, Staphylococcus, Proteiniclasticum, Acinetobacter, Erysipelothrix, Anaerobacillus, Ochrobactrum, Listeria and Photobacterium. Analysis of the yeast and filamentous fungi community composition by PCR-DGGE revealed the presence of close relatives of Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida zeylanoides, Saccharomyces cerevisiae, Debaryomyces, Torulaspora, Yamadazyma, Sporobolomyces, Alternaria, Cladosporium tenuissimum, Moristroma quercinum and Phoma/Epicoccum, and some of these species probably play key roles in the development of the sensory qualities of the end product. Finally, qualitative real-time PCR assays revealed the absence of STEC and Pseudomonas aeruginosa in all of the analyzed samples.


Subject(s)
Fermented Foods/microbiology , Food Microbiology , Microbiota , Seafood/microbiology , Sharks , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fermentation , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Hydrogen-Ion Concentration , Iceland , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
5.
Mol Genet Metab ; 124(1): 39-49, 2018 05.
Article in English | MEDLINE | ID: mdl-29661557

ABSTRACT

Untreated phenylketonuria (PKU) results in severe neurodevelopmental disorders, which can be partially prevented by an early and rigorous limitation of phenylalanine (Phe) intake. Enzyme substitution therapy with recombinant Anabaena variabilis Phe Ammonia Lyase (rAvPAL) proved to be effective in reducing blood Phe levels in preclinical and clinical studies of adults with PKU. Aims of present study were: a) to gather proofs of clinical efficacy of rAvPAL treatment in preventing neurological impairment in an early treated murine model of PKU; b) to test the advantages of an alternative delivering system for rAvPAL such as autologous erythrocytes. BTBR-Pahenu2-/- mice were treated from 15 to 64 post-natal days with weekly infusions of erythrocytes loaded with rAvPAL. Behavioral, neurochemical, and brain histological markers denoting untreated PKU were examined in early treated adult mice in comparison with untreated and wild type animals. rAvPAL therapy normalized blood and brain Phe; prevented cognitive developmental failure, brain depletion of serotonin, dendritic spine abnormalities, and myelin basic protein reduction. No adverse events or inactivating immune reaction were observed. In conclusion present study testifies the clinical efficacy of rAvPAL treatment in a preclinical model of PKU and the advantages of erythrocytes as carrier of the enzyme in term of frequency of the administrations and prevention of immunological reactions.


Subject(s)
Drug Delivery Systems , Intellectual Disability/prevention & control , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/drug therapy , Recombinant Proteins/therapeutic use , Administration, Intravenous , Anabaena/enzymology , Animals , Brain Chemistry , Disease Models, Animal , Drug Evaluation, Preclinical , Erythrocytes , Female , Intellectual Disability/etiology , Male , Mice , Mice, Knockout , Motor Activity , Phenylalanine/analysis , Phenylalanine/blood , Phenylalanine Ammonia-Lyase/administration & dosage , Phenylketonurias/complications , Recombinant Proteins/administration & dosage
6.
Int J Food Microbiol ; 276: 54-62, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29665523

ABSTRACT

The present study aimed to identify the microbiota present in six species of processed edible insects produced in Thailand and marketed worldwide via the internet, namely, giant water bugs (Belostoma lutarium), black ants (Polyrhachis), winged termites (alates, Termitoidae), rhino beetles (Hyboschema contractum), mole crickets (Gryllotalpidae), and silkworm pupae (Bombyx mori). For each species, two samples of boiled, dried and salted insects were purchased. The microbial DNA was extracted from the insect samples and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), high-throughput sequencing and qualitative real-time PCR assays. The microbiota of the analyzed samples were widely characterized by the presence of spore-forming bacteria mainly represented by the genera Bacillus and Clostridium. Moreover, the genera Anaerobacillus, Paenibacillus, Geobacillus, Pseudomonas, Stenotrophomonas, Massilia, Delftia, Lactobacillus, Staphylococcus, Streptococcus, Vagococcus, and Vibrio were also detected. Real-time PCR allowed for ascertainment of the absence of Coxiella burnetii, Shiga toxin-producing E. coli (STEC), and Pseudomonas aeruginosa in all samples. The results of this study confirm the importance of combining different molecular techniques to characterize the biodiversity of complex ecosystems such as edible insects. The presence of potential human pathogens suggests the need for a careful application of good manufacturing practices during insect processing. This study provides further data that will be useful in risk analyses of edible insects as a novel food source.


Subject(s)
Biodiversity , Food Microbiology , Insecta/microbiology , Metagenomics , Microbiota/physiology , Real-Time Polymerase Chain Reaction , Animals , Denaturing Gradient Gel Electrophoresis , High-Throughput Nucleotide Sequencing , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Thailand
7.
Int J Food Microbiol ; 272: 49-60, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29525619

ABSTRACT

Tenebrio molitor represents one of the most popular species used for the large-scale conversion of plant biomass into protein and is characterized by high nutritional value. In the present laboratory study, the bacterial biota characterizing a pilot production chain of fresh T. molitor larvae was investigated. To this end, different batches of fresh mealworm larvae, their feeding substrate (wheatmeal) and frass were analyzed by viable microbial counts, PCR-DGGE and Illumina sequencing. Moreover, the occurrence of Coxiella burnetii, Pseudomonas aeruginosa and Shiga toxin-producing E. coli (STEC) was assessed through qualitative real-time PCR assays. Microbial viable counts highlighted low microbial contamination of the wheatmeal, whereas larvae and frass were characterized by high loads of Enterobacteriaceae, lactic acid bacteria, and several species of mesophilic aerobes. Spore-forming bacteria were detected to a lesser extent in all the samples. The combined molecular approach used to profile the microbiota confirmed the low microbial contamination of wheatmeal and allowed the detection of Enterobacter spp., Erwinia spp., Enterococcus spp. and Lactococcus spp. as dominant genera in both larvae and frass. Moreover, Klebsiella spp., Pantoea spp., and Xenorhabdus spp. were found to be in the minority. Entomoplasmatales (including Spiroplasma spp.) constituted a major fraction of the microbiota of one batch of larvae. From the real-time PCR assays, no sample was positive for either C. burnetii or STEC, whereas P. aeruginosa was detected in one sample of frass. Based on the overall results, two sources of microbial contamination were hypothesized, namely feeding with wheatmeal and vertical transmission of microorganisms from mother to offspring. Since mealworms are expected to be eaten as a whole, the overall outcomes collected in this laboratory study discourage the consumption of fresh mealworm larvae. Moreover, microbial loads and the absence of potential pathogens known to be associated with this insect species should be carefully assessed in order to reduce the minimum risk for consumers, by identifying the most opportune processing methods (e.g., boiling, frying, drying, etc.).


Subject(s)
Larva/microbiology , Microbiota/genetics , Tenebrio/microbiology , Triticum/microbiology , Animals , Bacterial Load , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Real-Time Polymerase Chain Reaction , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification
8.
Adv Drug Deliv Rev ; 106(Pt A): 73-87, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27189231

ABSTRACT

Pharmacokinetics, biodistribution, and biological activity are key parameters that determine the success or failure of therapeutics. Many developments intended to improve their in vivo performance, aim at modulating concentration, biodistribution, and targeting to tissues, cells or subcellular compartments. Erythrocyte-based drug delivery systems are especially efficient in maintaining active drugs in circulation, in releasing them for several weeks or in targeting drugs to selected cells. Erythrocytes can also be easily processed to entrap the desired pharmaceutical ingredients before re-infusion into the same or matched donors. These carriers are totally biocompatible, have a large capacity and could accommodate traditional chemical entities (glucocorticoids, immunossuppresants, etc.), biologics (proteins) and/or contrasting agents (dyes, nanoparticles). Carrier erythrocytes have been evaluated in thousands of infusions in humans proving treatment safety and efficacy, hence gaining interest in the management of complex pathologies (particularly in chronic treatments and when side-effects become serious issues) and in new diagnostic approaches.


Subject(s)
Drug Delivery Systems/methods , Erythrocyte Transfusion , Erythrocytes/metabolism , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/blood , Animals , Contrast Media/administration & dosage , Drug Delivery Systems/adverse effects , Erythrocyte Transfusion/adverse effects , Erythrocytes/cytology , Humans , Tissue Distribution
9.
J Inherit Metab Dis ; 39(4): 519-30, 2016 07.
Article in English | MEDLINE | ID: mdl-27026098

ABSTRACT

The possibility to clone, express and purify recombinant enzymes have originated the opportunity to dispose of a virtually infinite array of proteins that could be used in the clinics to treat several inherited and acquired pathological conditions. However, the direct administration of these recombinant proteins faces some intrinsic difficulties, such as degradation by circulating proteases and/or inactivation by the patient immune system. The use of drug delivery systems may overcome these limitations. Concerning recombinant enzyme therapy, the present review will mainly focus on the exploitation of erythrocytes as a carrier system for enzymes removing potentially noxious metabolites from the circulation, either as limiting treatment strategy for auxotrophic tumours or as a detoxing approach for some intoxication type inherited metabolic disorders. Moreover, the possibility of using RBCs as a potential delivering system addressing the enzymes to the monocyte-macrophages of reticular endothelial system for the treatment of diseases associated with this cell lineage, e.g. lysosome storage diseases, will be briefly discussed.


Subject(s)
Drug Delivery Systems , Enzyme Replacement Therapy/methods , Enzymes/administration & dosage , Erythrocytes/physiology , Recombinant Proteins/administration & dosage , Animals , Drug Carriers , Humans , Lysosomal Storage Diseases/therapy
10.
J Control Release ; 194: 37-44, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25151978

ABSTRACT

Phenylketonuria (PKU) is an autosomal recessive genetic disease caused by defects in the phenylalanine hydroxylase gene. Preclinical and clinical investigations suggest that phenylalanine ammonia lyase (PAL) could be an effective alternative for the treatment of PKU. The aim of this study is to investigate if erythrocytes loaded with PAL may act as a safe delivery system able to overcome bioavailability issues and to provide, in vivo, a therapeutically relevant concentration of enzyme. Murine erythrocytes were loaded with recombinant PAL from Anabaena variabilis (rAvPAL) and their ability to perform as bioreactors was assessed in vivo in adult BTBR-Pah(enu2) mice, the genetic murine model of PKU. Three groups of mice were treated with a single i.v. injection of rAvPAL-RBCs at three different doses to select the most appropriate one for assessment of efficacy. Repeated administrations at 9-10 day-intervals of the selected dose for 10 weeks showed that the therapeutic effect was persistent and not affected by the generation of antibodies induced by the recombinant enzyme. This therapeutic approach deserves further in vivo evaluation either as a potential option for the treatment of PKU patients or as a possible model for the substitutive enzymatic treatment of other inherited metabolic disorders.


Subject(s)
Enzyme Replacement Therapy/methods , Erythrocytes/metabolism , Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/drug therapy , Animals , Biological Availability , Dose-Response Relationship, Drug , Drug Carriers , Drug Delivery Systems , Humans , Immunoglobulin G/analysis , Mice , Mice, Inbred Strains , Phenylalanine/metabolism , Phenylalanine Ammonia-Lyase/administration & dosage , Phenylketonurias/genetics , Recombinant Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...