Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Antibiot (Tokyo) ; 77(7): 454-465, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38724627

ABSTRACT

Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas virulence by reducing biofilm-formation approximately 45-48%, hemolytic-activity by 59%, pyocyanin-production by 47-49%, rhamnolipid-activity by approximately 42-47% and protease activity by 36-40%. While, phenothiazine showed lower anti-virulence activity, it inhibited biofilm (31-35%), pyocyanin (37-39%), protease (32-40%), rhamnolipid (35-40%) and hemolytic activity (47-56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Biofilms , Miconazole , Phenothiazines , Pseudomonas aeruginosa , Quorum Sensing , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/genetics , Quorum Sensing/drug effects , Miconazole/pharmacology , Phenothiazines/pharmacology , Biofilms/drug effects , Virulence/drug effects , Anti-Bacterial Agents/pharmacology , Animals , Microbial Sensitivity Tests , Pyocyanine/biosynthesis , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Virulence Factors/genetics , Mice , Molecular Docking Simulation , Glycolipids
2.
Braz J Microbiol ; 53(1): 1-18, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34773629

ABSTRACT

Staphylococcus aureus is a primary cause of hospital and community-acquired infections. With the emergence of multidrug-resistant S. aureus strains, there is a need for new drugs discovery. Due to the poor supply of new antimicrobials, targeting virulence of S. aureus may generate weaker selection for resistant strains, anti-virulence agents disarm the pathogen instead of killing it. In this study, the ability of the FDA-approved drugs domperidone, candesartan, and miconazole as inhibitors of S. aureus virulence was investigated. The effect of tested drugs was evaluated against biofilm formation, lipase, protease, hemolysin, and staphyloxanthin production by using phenotypic and genotypic methods. At sub-inhibitory concentrations, candesartan, domperidone, and miconazole showed a significant inhibition of hemolysin (75.8-96%), staphyloxanthin (81.2-85%), lipase (50-65%), protease (40-64%), and biofilm formation (71.4-90%). Domperidone and candesartan have similar activity and were more powerful than miconazole against S. aureus virulence. The hemolysins and lipase inhibition were the greatest under the domperidone effect. Candesartan showed a remarkable reduction in staphyloxanthin production. The highest inhibitory effect of proteolytic activity was obtained with domperidone and candesartan. Biofilm was significantly reduced by miconazole. Expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes were significantly reduced under candesartan (68.98-82.7%), domperidone (62.6-77.2%), and miconazole (32.96-52.6%) at sub-MIC concentrations. Candesartan showed the highest inhibition activity against crtM, sigB, sarA, agrA, hla, and icaA expression followed by domperidone then miconazole. Domperidone showed the highest downregulation activity against fnbA gene. In conclusion, candesartan, domperidone, and miconazole could serve as anti-virulence agents for attenuation of S. aureus pathogenicity.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Benzimidazoles , Biofilms , Biphenyl Compounds , Domperidone/pharmacology , Humans , Miconazole/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus aureus , Tetrazoles , Virulence/genetics
3.
Curr Microbiol ; 78(11): 3957-3967, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34550434

ABSTRACT

Candida albicans is the most common human fungal pathogen that has developed extensive virulence factors which allows successful colonization and infection of the host. Anti-virulence agents can alleviate the pathogenesis of fungi and help the immune system to eradicate them easily. This study aimed to explore the anti-virulence effect of domperidone and candesartan against C. albicans standard strain. Sub-inhibitory concentrations (1/4 and 1/8 of minimum inhibitory concentration) of domperidone and candesartan significantly inhibited the virulence factors hemolysin, lipase, protease, phospholipase, and bioflim formation. It was found that candesartan inhibited biofilm formation by 60.48-67.91%, hemolysin activity (61.21-74.14%), phospholipase activity (40-49.67%), lipase activity (58.97-73%), and protease activity (52.63%), while domperidone was found to inhibit biofilm formation by 70.54-77.49%, hemolysin activity (64.84-69.84%), phospholipase activity (49.67-60%), lipase activity (50-54.87%), and protease activity (52.63-57.9%). Quantitative real time-PCR confirmed the anti-virulence activity of domperidone and candesartan as both drugs significantly reduce the expression of the virulence genes SAP2, SAP6, PLB1, PLB2, LIP4, LIP5. In conclusion, domperidone and candesartan could serve as anti-virulence agents for treatment of C. albicans infections.


Subject(s)
Candida albicans , Domperidone , Benzimidazoles , Biphenyl Compounds , Domperidone/pharmacology , Humans , Tetrazoles/pharmacology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL