Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Front Oncol ; 14: 1443399, 2024.
Article in English | MEDLINE | ID: mdl-39220652

ABSTRACT

Background: Breast cancer (BC) affects racial and ethnic groups differently, leading to disparities in clinical presentation and outcomes. It is unclear how Hispanic ethnicity affects BC outcomes based on geographic location and proximity to the United States (U.S.)/Mexico border. We hypothesized that the impact of race/ethnicity on BC outcomes depends on geographic location and country of origin within each BC subtype. Methods: We analyzed BC data from the Texas Cancer Registry by race/ethnicity/birthplace according to BC subtype (luminal A/luminal B/human epidermal growth factor receptor 2 [HER2]/triple-negative breast cancer[TNBC]). Other covariates included age, geographic location (U.S., Mexico), residency (border, non-border), treatments, and comorbidities. Crude and adjusted effects of race/ethnicity and birthplace on overall survival (OS) were analyzed using Cox regression methods. Results: Our analysis of 76,310 patient records with specific BC subtypes revealed that Hispanic and non-Hispanic Black (NHB) patients were diagnosed at a younger age compared with non-Hispanic White (NHW) patients for all BC subtypes. For the 19,748 BC patients with complete data on race/ethnicity/birthplace/residency, Hispanic patients had a higher mortality risk in the Luminal A subtype, regardless of birthplace, whereas U.S.-born Hispanics had a higher risk of death in the TNBC subtype. In contrast, NHB patients had a higher mortality risk in the Luminal A and HER2 subtypes. Residence along the U.S./Mexico border had little impact on OS, with better outcomes in Luminal A patients and worse outcomes in Luminal B patients aged 60-74 years. Conclusion: Race/ethnicity, geographic birth location, and residency were significant predictors of survival in BC. Migration, acculturation, and reduced healthcare access may contribute to outcome differences.

2.
Noncoding RNA ; 10(4)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39051374

ABSTRACT

Tuberculosis (TB) is the leading cause of death among people with HIV-1 infection. To improve the diagnosis and treatment of HIV-TB patients, it is important to understand the mechanisms underlying these conditions. Here, we used an integrated genomics approach to analyze and determine the lncRNAs that are dysregulated in HIV-TB patients and HIV-TB patients undergoing anti-retroviral therapy (ART) using a dataset available in the public domain. The analyses focused on the portion of the genome transcribed into non-coding transcripts, which historically have been poorly studied and received less focus. This revealed that Mtb infection in HIV prominently up-regulates the expression of long non-coding RNA (lncRNA) genes DAAM2-AS1, COL4A2-AS1, LINC00599, AC008592.1, and CLRN1-AS1 and down-regulates the expression of lncRNAs AC111000.4, AC100803.3, AC016168.2, AC245100.7, and LINC02073. It also revealed that ART down-regulates the expression of some lncRNA genes (COL4A2-AS1, AC079210.1, MFA-AS1, and LINC01993) that are highly up-regulated in HIV-TB patients. Furthermore, the interrogation of the genomic regions that are associated with regulated lncRNAs showed enrichment for biological processes linked to immune pathways in TB-infected conditions. However, intriguingly, TB patients treated with ART showed completely opposite and non-overlapping pathways. Our findings suggest that lncRNAs could be used to identify critical diagnostic, prognostic, and treatment targets for HIV-TB patients.

3.
Gynecol Oncol Rep ; 54: 101426, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38881561

ABSTRACT

•ESR1 gene amplification occurs in 7% of uterine carcinosarcoma.•The presence of ESR1 gene amplification in recurrent uterine carcinosarcoma may be targeted by aromatase inhibitors.•ESR1 gene amplification may be identified through immunohistochemical staining for estrogen receptor followed by fluorescence in situ hybridization or tumor targeted gene sequencing.

4.
Vaccines (Basel) ; 12(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38793781

ABSTRACT

Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.

5.
Biochemistry ; 63(12): 1534-1542, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38804064

ABSTRACT

Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8) is a crucial epigenetic regulator that plays a multifaceted role in governing a spectrum of vital cellular processes, encompassing proliferation, apoptosis, migration, tumor suppression, and differentiation. It has emerged as a key player in neuronal differentiation by orchestrating the expression of neuronal lineage-committed genes. The present study uncovers the role of ZMYND8 in regulating the Sonic Hedgehog (SHH) signaling axis, which is crucial for neuronal differentiation. Genetic deletion of ZMYND8 leads to a significant reduction in SHH pathway genes, GLI1, and PTCH1 expression during all-trans-retinoic acid (ATRA)-induced differentiation. ZMYND8 and RNA pol II S5P are found to co-occupy the GLI1 and PTCH1 gene promoters, positively impacting their gene transcription upon ATRA treatment. Interestingly, ZMYND8 is found to counteract the inhibitory effects of Cyclopamine that block the upstream SHH pathway protein SMO, resulting in enhanced neurite formation in neuroblastoma cells following their treatment with ATRA. These results indicate that ZMYND8 is an epigenetic regulator of the SHH signaling pathway and has tremendous therapeutic potential in ATRA-mediated differentiation of neuroblastoma.


Subject(s)
Cell Differentiation , Hedgehog Proteins , Neuroblastoma , Signal Transduction , Tretinoin , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Humans , Cell Differentiation/drug effects , Tretinoin/pharmacology , Signal Transduction/drug effects , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/genetics , Cell Line, Tumor , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Gene Expression Regulation, Neoplastic/drug effects , Mice , Animals , Tumor Suppressor Proteins
6.
Interdiscip Med ; 1(4): e20230018, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38089921

ABSTRACT

Cardiac fibrosis is the excessive accumulation of extracellular matrix components in the heart, leading to reduced cardiac functionality and heart failure. This review provides an overview of the therapeutic applications of nanotechnology for the treatment of cardiac fibrosis. We first delve into the fundamental pathophysiology of cardiac fibrosis, highlighting the key molecular players, including Matrix Metalloproteinases, Transforming Growth Factor-beta, and several growth factors, cytokines, and signaling molecules. Each target presents a unique opportunity to develop targeted nano-therapies. We then focus on recent advancements in nanotechnology and how nanoparticles can be engineered to deliver drugs or therapeutic genes. These advanced delivery approaches have shown significant potential to inhibit fibrosis-promoting factors, thereby mitigating the fibrotic response and potentially reversing disease progression. In addition, we discuss the challenges associated with developing and translating nanotechnology-based drug delivery systems, including ensuring biocompatibility, safety, and regulatory compliance. This review highlights how nanotechnology can bridge the gap between lab research and clinical practice for treating cardiac fibrosis.

7.
Noncoding RNA Res ; 8(3): 282-293, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36970372

ABSTRACT

Non-coding RNAs (ncRNAs), specifically long ncRNAs (lncRNAs), regulate cellular processes by affecting gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging evidence indicates that pathogenic microbes dysregulate the expression of host lncRNAs to suppress cellular defense mechanisms and promote survival. To understand whether the pathogenic human mycoplasmas dysregulate host lncRNAs, we infected HeLa cells with Mycoplasma genitalium (Mg) and Mycoplasma penumoniae (Mp) and assessed the expression of lncRNAs by directional RNA-seq analysis. HeLa cells infected with these species showed up-and-down regulation of lncRNAs expression, indicating that both species can modulate host lncRNAs. However, the number of upregulated (200 for Mg and 112 for Mp) and downregulated lncRNAs (30 for Mg and 62 for Mp) differ widely between these two species. GREAT analysis of the noncoding regions associated with differentially expressed lncRNAs showed that Mg and Mp regulate a discrete set of lncRNA plausibly related to transcription, metabolism, and inflammation. Further, signaling network analysis of the differentially regulated lncRNAs exhibited diverse pathways such as neurodegeneration, NOD-like receptor signaling, MAPK signaling, p53 signaling, and PI3K signaling, suggesting that both species primarily target signaling mechanisms. Overall, the study's results suggest that Mg and Mp modulate lncRNAs to promote their survival within the host but in distinct manners.

8.
Biochimie ; 211: 1-15, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36809827

ABSTRACT

Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme that reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Its pivotal role in the cellular processes has been well established by overexpressing, silencing, and knocking down MsrA or deleting the gene encoding MsrA in several species. We are specifically interested in understanding the role of secreted MsrA in bacterial pathogens. To elucidate this, we infected mouse bone marrow-derived macrophages (BMDMs) with recombinant Mycobacterium smegmatis strain (MSM), secreting a bacterial MsrA or M. smegmatis strain (MSC) carrying only the control vector. BMDMs infected with MSM induced higher levels of ROS and TNF-α than BMDMs infected with MSC. The increased ROS and TNF-α levels in MSM-infected BMDMs correlated with elevated necrotic cell death in this group. Further, RNA-seq transcriptome analysis of BMDMs infected with MSC and MSM revealed differential expression of protein and RNA coding genes, suggesting that bacterial-delivered MsrA could modulate the host cellular processes. Finally, KEGG pathway enrichment analysis identified the down-regulation of cancer-related signaling genes in MSM-infected cells, indicating that MsrA can potentially regulate the development and progression of cancer.


Subject(s)
Macrophages , Methionine Sulfoxide Reductases , Mycobacterium smegmatis , Animals , Mice , Macrophages/microbiology , Methionine/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Cell Death Dis ; 13(9): 766, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064715

ABSTRACT

Zinc Finger transcription factors are crucial in modulating various cellular processes, including differentiation. Chromatin reader Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8), an All-Trans Retinoic Acid (ATRA)-responsive gene, was previously shown to play a crucial role in promoting the expression of neuronal-lineage committed genes. Here, we report that ZMYND8 promotes neuronal differentiation by positively regulating canonical MAPT protein-coding gene isoform, a key player in the axonal development of neurons. Additionally, ZMYND8 modulates gene-isoform switching by epigenetically silencing key regulatory regions within the MAPT gene, thereby suppressing the expression of non-protein-coding isoforms such as MAPT213. Genetic deletion of ZMYND8 led to an increase in the MAPT213 that potentially suppressed the parental MAPT protein-coding transcript expression related to neuronal differentiation programs. In addition, ectopic expression of MAPT213 led to repression of MAPT protein-coding transcript. Similarly, ZMYND8-driven transcription regulation was also observed in other neuronal differentiation-promoting genes. Collectively our results elucidate a novel mechanism of ZMYND8-dependent transcription regulation of different neuronal lineage committing genes, including MAPT, to promote neural differentiation.


Subject(s)
RNA, Long Noncoding , Cell Differentiation/genetics , Chromatin , Gene Expression Regulation , RNA, Long Noncoding/genetics , Tretinoin/pharmacology , Tumor Suppressor Proteins/metabolism
10.
Mol Cancer Res ; 20(11): 1623-1635, 2022 11 03.
Article in English | MEDLINE | ID: mdl-35997635

ABSTRACT

Long noncoding RNAs have been implicated in many of the hallmarks of cancer. Herein, we found that the expression of lncRNA152 (lnc152; a.k.a. DRAIC), which we annotated previously, is highly upregulated in luminal breast cancer (LBC) and downregulated in triple-negative breast cancer (TNBC). Knockdown of lnc152 promotes cell migration and invasion in LBC cell lines. In contrast, ectopic expression of lnc152 inhibits growth, migration, invasion, and angiogenesis in TNBC cell lines. In mice, lnc152 inhibited the growth of TNBC cell xenografts, as well as metastasis of TNBC cells in an intracardiac injection model. Transcriptome analysis of the xenografts indicated that lnc152 downregulates genes controlling angiogenesis. Using pull down assays followed by LC/MS-MS, we identified RBM47, a known tumor suppressor in breast cancer, as a lnc152-interacting protein. The effects of lnc152 in TNBC cells are mediated, in part, by regulating the expression of RBM47. Collectively, our results demonstrate that lnc152 is an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC. IMPLICATIONS: This study identifies lncRNA152 as an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC by upregulating the expression of the tumor suppressor RBM47. As such, lncRNA152 may serve as a biomarker to track aggressiveness of breast cancer, as well as therapeutic target for treating TNBC.


Subject(s)
RNA, Long Noncoding , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Neoplasm Invasiveness/genetics , Neovascularization, Pathologic/genetics , RNA-Binding Proteins/genetics , Triple Negative Breast Neoplasms/pathology , RNA, Long Noncoding/genetics
11.
Vaccines (Basel) ; 10(5)2022 May 21.
Article in English | MEDLINE | ID: mdl-35632572

ABSTRACT

Prophylactic vaccination against infectious diseases is one of the most successful public health measures of our lifetime. More recently, therapeutic vaccination against established diseases such as cancer has proven to be more challenging. In the host, cancer cells evade immunologic regulation by multiple means, including altering the antigens expressed on their cell surface or recruiting inflammatory cells that repress immune surveillance. Nevertheless, recent clinical data suggest that two classes of antigens show efficacy for the development of anticancer vaccines: tumor-associated antigens and neoantigens. In addition, many different vaccines derived from antigens based on cellular, peptide/protein, and genomic components are in development to establish their efficacy in cancer therapy. Some vaccines have shown promising results, which may lead to favorable outcomes when combined with standard therapeutic approaches. This review provides an overview of the innate and adaptive immune systems, their interactions with cancer cells, and the development of various different vaccines for use in anticancer therapeutics.

12.
Biosci Rep ; 42(4)2022 04 29.
Article in English | MEDLINE | ID: mdl-35438143

ABSTRACT

Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.


Subject(s)
Drug Resistance, Neoplasm , Signal Transduction , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Signal Transduction/genetics , Tumor Microenvironment/genetics
13.
J Endocr Soc ; 5(11): bvab153, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34703959

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of biological processes. However, the aberrant expression of an isoform from the same lncRNA gene could lead to RNA with altered functions due to changes in their conformations, leading to diseases. Here, we describe a detailed characterization of the gene that encodes long intergenic non-protein-coding RNA 01016 (LINC01016, also known as LncRNA1195) with a focus on its structure, exon usage, and expression in human and macaque tissues. In this study we show that it is among the highly expressed lncRNAs in the testis, exclusively conserved among nonhuman primates, suggesting its recent evolution and is processed into 12 distinct RNAs in testis, cervix, and uterus tissues. Further, we integrate de novo annotation of expressed LINC01016 transcripts and isoform-dependent gene expression analyses to show that human LINC01016 is a multiexon gene, processed through differential exon usage with isoform-specific roles. Furthermore, in cervical, testicular, and uterine cancers, LINC01016 isoforms are differentially expressed, and their expression is predictive of survival in these cancers. This study has revealed an essential aspect of lncRNA biology, rarely associated with coding RNAs, that lncRNA genes are precisely processed to generate isoforms with distinct biological roles in specific tissues.

14.
Front Immunol ; 12: 738431, 2021.
Article in English | MEDLINE | ID: mdl-34707609

ABSTRACT

Mycoplasma genitalium and M. pneumoniae are two significant mycoplasmas that infect the urogenital and respiratory tracts of humans. Despite distinct tissue tropisms, they both have similar pathogenic mechanisms and infect/invade epithelial cells in the respective regions and persist within these cells. However, the pathogenic mechanisms of these species in terms of bacterium-host interactions are poorly understood. To gain insights on this, we infected HeLa cells independently with M. genitalium and M. pneumoniae and assessed gene expression by whole transcriptome sequencing (RNA-seq) approach. The results revealed that HeLa cells respond to M. genitalium and M. pneumoniae differently by regulating various protein-coding genes. Though there is a significant overlap between the genes regulated by these species, many of the differentially expressed genes were specific to each species. KEGG pathway and signaling network analyses revealed that the genes specific to M. genitalium are more related to cellular processes. In contrast, the genes specific to M. pneumoniae infection are correlated with immune response and inflammation, possibly suggesting that M. pneumoniae has some inherent ability to modulate host immune pathways.


Subject(s)
Epithelial Cells/microbiology , Mycoplasma genitalium/pathogenicity , Mycoplasma pneumoniae/pathogenicity , Transcriptome , Epithelial Cells/immunology , Epithelial Cells/metabolism , Gene Expression Profiling , Gene Regulatory Networks , HeLa Cells , Host-Pathogen Interactions , Humans , Mycoplasma genitalium/immunology , Mycoplasma pneumoniae/immunology , Protein Interaction Maps , RNA-Seq , Signal Transduction , Exome Sequencing
15.
FASEB J ; 35(9): e21814, 2021 09.
Article in English | MEDLINE | ID: mdl-34369624

ABSTRACT

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Mitochondria/genetics , Molecular Chaperones/genetics , Phosphoric Monoester Hydrolases/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , Tumor Suppressor Protein p53/genetics , Adaptation, Biological/genetics , Apoptosis/genetics , Cell Line, Tumor , Energy Metabolism/genetics , Glucose/genetics , Hep G2 Cells , Homeostasis/genetics , Humans , Membrane Potential, Mitochondrial/genetics , Stress, Physiological/genetics , Transcriptional Activation/genetics
16.
Mol Cancer Res ; 19(10): 1688-1698, 2021 10.
Article in English | MEDLINE | ID: mdl-34158394

ABSTRACT

Poly(ADP-ribose) polymerase-1 (PARP-1) has gained considerable attention as a target for therapeutic inhibitors in breast cancers. Previously we showed that PARP-1 localizes to active gene promoters to regulate histone methylation and RNA polymerase II activity (Pol II), altering the expression of various tumor-related genes. Here we report a role for PARP-1 in estrogen-dependent transcription in estrogen receptor alpha (ERα)-positive (ER+) breast cancers. Global nuclear run-on and sequencing analyses functionally linked PARP-1 to the direct control of estrogen-regulated gene expression in ER+ MCF-7 breast cancer cells by promoting transcriptional elongation by Pol II. Furthermore, chromatin immunoprecipitation sequencing analyses revealed that PARP-1 regulates the estrogen-dependent binding of ERα and FoxA1 to a subset of genomic ERα binding sites, promoting active enhancer formation. Moreover, we found that the expression levels of the PARP-1- and estrogen-coregulated gene set are enriched in the luminal subtype of breast cancer, and high PARP-1 expression in ER+ cases correlates with poor survival. Finally, treatment with a PARP inhibitor or a transcriptional elongation inhibitor attenuated estrogen-dependent growth of multiple ER+ breast cancer cell lines. Taken together, our results show that PARP-1 regulates critical molecular pathways that control the estrogen-dependent gene expression program underlying the proliferation of ER+ breast cancer cells. IMPLICATIONS: PARP-1 regulates the estrogen-dependent genomic binding of ERα and FoxA1 to regulate critical gene expression programs by RNA Pol II that underlie the proliferation of ER+ breast cancers, providing a potential therapeutic opportunity for PARP inhibitors in estrogen-responsive breast cancers.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Breast Neoplasms/drug therapy , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Estrogens/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , MCF-7 Cells , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA Polymerase II/genetics
17.
Cancer Res ; 81(16): 4174-4182, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34016622

ABSTRACT

Despite extensive progress in developing anticancer therapies, therapy resistance remains a major challenge that promotes disease relapse. The changes that lead to therapy resistance can be intrinsically present or may be initiated during treatment. Genetic and epigenetic heterogeneity in tumors make it more challenging to deal with therapy resistance. Recent advances in genome-wide analyses have revealed that the deregulation of distal gene regulatory elements, such as enhancers, appears in several pathophysiological conditions, including cancer. Beyond the conventional function of enhancers in recruiting transcription factors to gene promoters, enhancer elements are also transcribed into noncoding RNAs known as enhancer RNAs (eRNA). Accumulating evidence suggests that uncontrolled enhancer activity with aberrant eRNA expression promotes oncogenesis. Interestingly, tissue-specific, transcribed eRNAs from active enhancers can serve as potential therapeutic targets or biomarkers in several cancer types. This review provides a comprehensive overview of the mechanisms of enhancer transcription and eRNAs as well as their potential roles in cancer and drug resistance.


Subject(s)
Enhancer Elements, Genetic , Neoplasms/genetics , Transcription, Genetic , Animals , Drug Resistance, Neoplasm , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Histones/metabolism , Humans , Mice , Neoplasm Recurrence, Local , Neoplasms/metabolism , Oncogenes , Regulatory Sequences, Nucleic Acid
18.
Cell Death Dis ; 11(12): 1073, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33323928

ABSTRACT

The major challenge in chemotherapy lies in the gain of therapeutic resistance properties of cancer cells. The relatively small fraction of chemo-resistant cancer cells outgrows and are responsible for tumor relapse, with acquired invasiveness and stemness. We demonstrate that zinc-finger MYND type-8 (ZMYND8), a putative chromatin reader, suppresses stemness, drug resistance, and tumor-promoting genes, which are hallmarks of cancer. Reinstating ZMYND8 suppresses chemotherapeutic drug doxorubicin-induced tumorigenic potential (at a sublethal dose) and drug resistance, thereby resetting the transcriptional program of cells to the epithelial state. The ability of ZMYND8 to chemo-sensitize doxorubicin-treated metastatic breast cancer cells by downregulating tumor-associated genes was further confirmed by transcriptome analysis. Interestingly, we observed that ZMYND8 overexpression in doxorubicin-treated cells stimulated those involved in a good prognosis in breast cancer. Consistently, sensitizing the cancer cells with ZMYND8 followed by doxorubicin treatment led to tumor regression in vivo and revert back the phenotypes associated with drug resistance and stemness. Intriguingly, ZMYND8 modulates the bivalent or poised oncogenes through its association with KDM5C and EZH2, thereby chemo-sensitizing the cells to chemotherapy for better disease-free survival. Collectively, our findings indicate that poised chromatin is instrumental for the acquisition of chemo-resistance by cancer cells and propose ZMYND8 as a suitable epigenetic tool that can re-sensitize the chemo-refractory breast carcinoma.


Subject(s)
Oncogenes , Tumor Suppressor Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic/drug effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human , Histone Demethylases/metabolism , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Treatment Outcome , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
19.
J Clin Med ; 9(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823540

ABSTRACT

COVID-19 has catastrophically affected the world's panoramic view of human well-being in terms of healthcare and management. With the increase in the number of cases worldwide, neurological symptoms and psychological illnesses from COVID-19 have increasingly upsurged. Mental health illness and affective disorders, including depression, obsessive-compulsive disorder, anxiety, phobia, and panic disorders, are highly impacted due to social distress. The COVID-19 pandemic not only affected people with pre-existing mental and affective illnesses, but also healthy individuals with anxiety, worrying, and panic symptoms, and fear conditioning. In addditon, the novel coronavirus is known to impact the central nervous system in the brain, resulting in severe and certain long-lasting neurological issues. Owing to the significance of neurological and psychological events, the present perspective has been an attempt to disseminate the impact of COVID-19 on neural injury through inflammation, and its interrelation with psychological symptoms. In this current review, we synthesize the literature to highlight the critical associations between SARS-CoV-2 infection and the nervous system, and mental health illness, and discuss potential mechanisms of neural injury through psycho-neuroimmunity.

20.
Cancers (Basel) ; 12(6)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532008

ABSTRACT

Hypoxanthine phosphoribosyl transferase 1 (HPRT1) is traditionally believed to be a housekeeping gene; however, recent reports suggest that it is upregulated in several cancers and is associated with clinical outcomes. HPRT1 is located on chromosome X and encodes the HPRT enzyme, which functions in recycling nucleotides to supply for DNA and RNA synthesis in actively dividing cells. Here, we used transcriptomic analyses to interrogate its expression across all known cancer types and elucidated its role in regulating gene expression in breast cancer. We observed elevated HPRT1 RNA levels in malignant tissues when compared to normal controls, indicating its potential as a diagnostic and prognostic marker. Further, in breast cancer, the subtype-specific analysis showed that its expression was highest in basal and triple-negative breast cancer, and HPRT1 knockdown in breast cancer cells suggested that HPRT1 positively regulates genes related to cancer pathways. Collectively, our results essentially highlight the importance of and change the way in which HPRT1's function is studied in biology, warranting careful examination of its role in cancer.

SELECTION OF CITATIONS
SEARCH DETAIL