Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Invest Dermatol ; 141(8): 1975-1984, 2021 08.
Article in English | MEDLINE | ID: mdl-33607115

ABSTRACT

Chromatin looping between regulatory elements and gene promoters presents a potential mechanism whereby disease risk variants affect their target genes. In this study, we use H3K27ac HiChIP, a method for assaying the active chromatin interactome in two cell lines: keratinocytes and skin lymphoma-derived CD8+ T cells. We integrate public datasets for a lymphoblastoid cell line and primary CD4+ T cells and identify gene targets at risk loci for skin-related disorders. Interacting genes enrich for pathways of known importance in each trait, such as cytokine response (psoriatic arthritis and psoriasis) and replicative senescence (melanoma). We show examples of how our analysis can inform changes in the current understanding of multiple psoriasis-associated risk loci. For example, the variant rs10794648, which is generally assigned to IFNLR1, was linked to GRHL3, a gene essential in skin repair and development, in our dataset. Our findings, therefore, indicate a renewed importance of skin-related factors in the risk of disease.


Subject(s)
Chromatin/metabolism , Genetic Predisposition to Disease , Quantitative Trait Loci , Skin Diseases/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/genetics , Datasets as Topic , Enhancer Elements, Genetic , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Receptors, Interferon/genetics , Transcription Factors/genetics
2.
Ann Rheum Dis ; 80(3): 321-328, 2021 03.
Article in English | MEDLINE | ID: mdl-33106285

ABSTRACT

OBJECTIVES: Juvenile idiopathic arthritis (JIA) is the most prevalent form of juvenile rheumatic disease. Our understanding of the genetic risk factors for this disease is limited due to low disease prevalence and extensive clinical heterogeneity. The objective of this research is to identify novel JIA susceptibility variants and link these variants to target genes, which is essential to facilitate the translation of genetic discoveries to clinical benefit. METHODS: We performed a genome-wide association study (GWAS) in 3305 patients and 9196 healthy controls, and used a Bayesian model selection approach to systematically investigate specificity and sharing of associated loci across JIA clinical subtypes. Suggestive signals were followed-up for meta-analysis with a previous GWAS (2751 cases/15 886 controls). We tested for enrichment of association signals in a broad range of functional annotations, and integrated statistical fine-mapping and experimental data to identify target genes. RESULTS: Our analysis provides evidence to support joint analysis of all JIA subtypes with the identification of five novel significant loci. Fine-mapping nominated causal single nucleotide polymorphisms with posterior inclusion probabilities ≥50% in five JIA loci. Enrichment analysis identified RELA and EBF1 as key transcription factors contributing to disease risk. Our integrative approach provided compelling evidence to prioritise target genes at six loci, highlighting mechanistic insights for the disease biology and IL6ST as a potential drug target. CONCLUSIONS: In a large JIA GWAS, we identify five novel risk loci and describe potential function of JIA association signals that will be informative for future experimental works and therapeutic strategies.


Subject(s)
Arthritis, Juvenile , Genome-Wide Association Study , Arthritis, Juvenile/genetics , Bayes Theorem , Genetic Loci , Genetic Predisposition to Disease/genetics , Genotype , Humans , Polymorphism, Single Nucleotide
3.
BMC Biol ; 18(1): 47, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32366252

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have uncovered many genetic risk loci for psoriasis, yet many remain uncharacterised in terms of the causal gene and their biological mechanism in disease. This is largely a result of the findings that over 90% of GWAS variants map outside of protein-coding DNA and instead are enriched in cell type- and stimulation-specific gene regulatory regions. RESULTS: Here, we use a disease-focused Capture Hi-C (CHi-C) experiment to link psoriasis-associated variants with their target genes in psoriasis-relevant cell lines (HaCaT keratinocytes and My-La CD8+ T cells). We confirm previously assigned genes, suggest novel candidates and provide evidence for complexity at psoriasis GWAS loci. For one locus, uniquely, we combine further epigenomic evidence to demonstrate how a psoriasis-associated region forms a functional interaction with the distant (> 500 kb) KLF4 gene. This interaction occurs between the gene and active enhancers in HaCaT cells, but not in My-La cells. We go on to investigate this long-distance interaction further with Cas9 fusion protein-mediated chromatin modification (CRISPR activation) coupled with RNA-seq, demonstrating how activation of the psoriasis-associated enhancer upregulates KLF4 and its downstream targets, relevant to skin cells and apoptosis. CONCLUSIONS: This approach utilises multiple functional genomic techniques to follow up GWAS-associated variants implicating relevant cell types and causal genes in each locus; these are vital next steps for the translation of genetic findings into clinical benefit.


Subject(s)
DNA/genetics , Genetic Predisposition to Disease , Psoriasis/genetics , Apoptosis , Chromosome Mapping , Genome-Wide Association Study , HaCaT Cells , Humans , Kruppel-Like Factor 4
4.
Ann Rheum Dis ; 78(8): 1127-1134, 2019 08.
Article in English | MEDLINE | ID: mdl-31092410

ABSTRACT

OBJECTIVES: There is a need to identify effective treatments for rheumatic diseases, and while genetic studies have been successful it is unclear which genes contribute to the disease. Using our existing Capture Hi-C data on three rheumatic diseases, we can identify potential causal genes which are targets for existing drugs and could be repositioned for use in rheumatic diseases. METHODS: High confidence candidate causal genes were identified using Capture Hi-C data from B cells and T cells. These genes were used to interrogate drug target information from DrugBank to identify existing treatments, which could be repositioned to treat these diseases. The approach was refined using Ingenuity Pathway Analysis to identify enriched pathways and therefore further treatments relevant to the disease. RESULTS: Overall, 454 high confidence genes were identified. Of these, 48 were drug targets (108 drugs) and 11 were existing therapies used in the treatment of rheumatic diseases. After pathway analysis refinement, 50 genes remained, 13 of which were drug targets (33 drugs). However considering targets across all enriched pathways, a further 367 drugs were identified for potential repositioning. CONCLUSION: Capture Hi-C has the potential to identify therapies which could be repositioned to treat rheumatic diseases. This was particularly successful for rheumatoid arthritis, where six effective, biologic treatments were identified. This approach may therefore yield new ways to treat patients, enhancing their quality of life and reducing the economic impact on healthcare providers. As additional cell types and other epigenomic data sets are generated, this prospect will improve further.


Subject(s)
Antirheumatic Agents/therapeutic use , Chromatin/genetics , Drug Repositioning/statistics & numerical data , Molecular Targeted Therapy/methods , Receptors, Estrogen/drug effects , Rheumatic Diseases/genetics , Chromatin/drug effects , Cohort Studies , Drug Repositioning/methods , Female , Genetic Association Studies , Genome-Wide Association Study , Humans , Male , Receptors, Estrogen/genetics , Rheumatic Diseases/drug therapy , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...