Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Biotechnol ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679541

ABSTRACT

Base and prime editors (BEs and PEs) may provide more precise genetic engineering than nuclease-based approaches because they bypass the dependence on DNA double-strand breaks. However, little is known about their cellular responses and genotoxicity. Here, we compared state-of-the-art BEs and PEs and Cas9 in human hematopoietic stem and progenitor cells with respect to editing efficiency, cytotoxicity, transcriptomic changes and on-target and genome-wide genotoxicity. BEs and PEs induced detrimental transcriptional responses that reduced editing efficiency and hematopoietic repopulation in xenotransplants and also generated DNA double-strand breaks and genotoxic byproducts, including deletions and translocations, at a lower frequency than Cas9. These effects were strongest for cytidine BEs due to suboptimal inhibition of base excision repair and were mitigated by tailoring delivery timing and editor expression through optimized mRNA design. However, BEs altered the mutational landscape of hematopoietic stem and progenitor cells across the genome by increasing the load and relative proportions of nucleotide variants. These findings raise concerns about the genotoxicity of BEs and PEs and warrant further investigation in view of their clinical application.

3.
Blood ; 142(9): 812-826, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37294917

ABSTRACT

Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses the delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo via electroporation, and when aiming for homology-driven correction of a DNA template, often provided by viral vectors together with a nuclease editor. Although HSPCs activate a robust p53-dependent DNA damage response upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multiomics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism, and inducing an inflammatory response. Nuclease RNA delivery using lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding a higher number of edited cells compared with using electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared with electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for the treatment of human diseases.


Subject(s)
Gene Editing , Tumor Suppressor Protein p53 , Humans , Gene Editing/methods , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hematopoietic Stem Cells/metabolism , RNA/metabolism , CRISPR-Cas Systems
4.
Structure ; 28(7): 820-829.e6, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32413290

ABSTRACT

Mitotic progression is orchestrated by the microtubule-based motor dynein, which sustains all mitotic spindle functions. During cell division, cytoplasmic dynein acts with the high-molecular-weight complex dynactin and nuclear mitotic apparatus (NuMA) to organize and position the spindle. Here, we analyze the interaction interface between NuMA and the light intermediate chain (LIC) of eukaryotic dynein. Structural studies show that NuMA contains a hook domain contacting directly LIC1 and LIC2 chains through a conserved hydrophobic patch shared among other Hook adaptors. In addition, we identify a LIC-binding motif within the coiled-coil region of NuMA that is homologous to CC1-boxes. Analysis of mitotic cells revealed that both LIC-binding sites of NuMA are essential for correct spindle placement and cell division. Collectively, our evidence depicts NuMA as the dynein-activating adaptor acting in the mitotic processes of spindle organization and positioning.


Subject(s)
Cell Cycle Proteins/chemistry , Dyneins/chemistry , Spindle Apparatus/chemistry , Binding Sites , Cell Cycle Proteins/metabolism , Dyneins/metabolism , HEK293 Cells , HeLa Cells , Humans , Mitosis , Protein Binding , Spindle Apparatus/metabolism
5.
Nat Commun ; 10(1): 2208, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101817

ABSTRACT

Cortical force generators connect epithelial polarity sites with astral microtubules, allowing dynein movement to orient the mitotic spindle as astral microtubules depolymerize. Complexes of the LGN and NuMA proteins, fundamental components of force generators, are recruited to the cortex by Gαi-subunits of heterotrimeric G-proteins. They associate with dynein/dynactin and activate the motor activity pulling on astral microtubules. The architecture of cortical force generators is unknown. Here we report the crystal structure of NuMA:LGN hetero-hexamers, and unveil their role in promoting the assembly of active cortical dynein/dynactin motors that are required in orchestrating oriented divisions in polarized cells. Our work elucidates the basis for the structural organization of essential spindle orientation motors.


Subject(s)
Antigens, Nuclear/metabolism , Cell Polarity , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Antigens, Nuclear/chemistry , Antigens, Nuclear/genetics , Antigens, Nuclear/isolation & purification , Caco-2 Cells , Cell Cycle Proteins , Crystallography, X-Ray , Dynactin Complex/metabolism , Dyneins/metabolism , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/isolation & purification , Microtubules/metabolism , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/isolation & purification , Protein Binding/physiology , Protein Multimerization/physiology , RNA, Small Interfering/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...