Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38543176

ABSTRACT

The radionuclides 43Sc, 44g/mSc, and 47Sc can be produced cost-effectively in sufficient yield for medical research and applications by irradiating natTi and natV target materials with protons. Maximizing the production yield of the therapeutic 47Sc in the highest cross section energy range of 24-70 MeV results in the co-production of long-lived, high-γ-ray-energy 46Sc and 48Sc contaminants if one does not use enriched target materials. Mass separation can be used to obtain high molar activity and isotopically pure Sc radionuclides from natural target materials; however, suitable operational conditions to obtain relevant activity released from irradiated natTi and natV have not yet been established at CERN-MEDICIS and ISOLDE. The objective of this work was to develop target units for the production, release, and purification of Sc radionuclides by mass separation as well as to investigate target materials for the mass separation that are compatible with high-yield Sc radionuclide production in the 9-70 MeV proton energy range. In this study, the in-target production yield obtained at MEDICIS with 1.4 GeV protons is compared with the production yield that can be reached with commercially available cyclotrons. The thick-target materials were irradiated at MEDICIS and comprised of metallic natTi, natV metallic foils, and natTiC pellets. The produced radionuclides were subsequently released, ionized, and extracted from various target and ion source units and mass separated. Mono-atomic Sc laser and molecule ionization with forced-electron-beam-induced arc-discharge ion sources were investigated. Sc radionuclide production in thick natTi and natV targets at MEDICIS is equivalent to low- to medium-energy cyclotron-irradiated targets at medically relevant yields, furthermore benefiting from the mass separation possibility. A two-step laser resonance ionization scheme was used to obtain mono-atomic Sc ion beams. Sc radionuclide release from irradiated target units most effectively could be promoted by volatile scandium fluoride formation. Thus, isotopically pure 44g/mSc, 46Sc, and 47Sc were obtained as mono-atomic and molecular ScF 2+ ion beams and collected for the first time at CERN-MEDICIS. Among all the investigated target materials, natTiC is the most suitable target material for Sc mass separation as molecular halide beams, due to high possible operating temperatures and sustained release.

2.
Front Med (Lausanne) ; 8: 727557, 2021.
Article in English | MEDLINE | ID: mdl-34712678

ABSTRACT

Terbium (Tb) is a promising element for the theranostic approach in nuclear medicine. The new CERN-MEDICIS facility aims for production of its medical radioisotopes to support related R&D projects in biomedicine. The use of laser resonance ionization is essential to provide radioisotopic yields of highest quantity and quality, specifically regarding purity. This paper presents the results of preparation and characterization of a suitable two-step laser resonance ionization process for Tb. By resonance excitation via an auto-ionizing level, the high ionization efficiency of 53% was achieved. To simulate realistic production conditions for Tb radioisotopes, the influence of a surplus of Gd atoms, which is a typical target material for Tb generation, was considered, showing the necessity of radiochemical purification procedures before mass separation. Nevertheless, a 10-fold enhancement of the Tb ion beam using laser resonance ionization was observed even with Gd:Tb atomic ratio of 100:1.

3.
Front Med (Lausanne) ; 8: 693682, 2021.
Article in English | MEDLINE | ID: mdl-34336898

ABSTRACT

The CERN-MEDICIS (MEDical Isotopes Collected from ISolde) facility has delivered its first radioactive ion beam at CERN (Switzerland) in December 2017 to support the research and development in nuclear medicine using non-conventional radionuclides. Since then, fourteen institutes, including CERN, have joined the collaboration to drive the scientific program of this unique installation and evaluate the needs of the community to improve the research in imaging, diagnostics, radiation therapy and personalized medicine. The facility has been built as an extension of the ISOLDE (Isotope Separator On Line DEvice) facility at CERN. Handling of open radioisotope sources is made possible thanks to its Radiological Controlled Area and laboratory. Targets are being irradiated by the 1.4 GeV proton beam delivered by the CERN Proton Synchrotron Booster (PSB) on a station placed between the High Resolution Separator (HRS) ISOLDE target station and its beam dump. Irradiated target materials are also received from external institutes to undergo mass separation at CERN-MEDICIS. All targets are handled via a remote handling system and exploited on a dedicated isotope separator beamline. To allow for the release and collection of a specific radionuclide of medical interest, each target is heated to temperatures of up to 2,300°C. The created ions are extracted and accelerated to an energy up to 60 kV, and the beam steered through an off-line sector field magnet mass separator. This is followed by the extraction of the radionuclide of interest through mass separation and its subsequent implantation into a collection foil. In addition, the MELISSA (MEDICIS Laser Ion Source Setup At CERN) laser laboratory, in service since April 2019, helps to increase the separation efficiency and the selectivity. After collection, the implanted radionuclides are dispatched to the biomedical research centers, participating in the CERN-MEDICIS collaboration, for Research & Development in imaging or treatment. Since its commissioning, the CERN-MEDICIS facility has provided its partner institutes with non-conventional medical radionuclides such as Tb-149, Tb-152, Tb-155, Sm-153, Tm-165, Tm-167, Er-169, Yb-175, and Ac-225 with a high specific activity. This article provides a review of the achievements and milestones of CERN-MEDICIS since it has produced its first radioactive isotope in December 2017, with a special focus on its most recent operation in 2020.

4.
Front Med (Lausanne) ; 8: 643175, 2021.
Article in English | MEDLINE | ID: mdl-33968955

ABSTRACT

The ß--particle-emitting erbium-169 is a potential radionuclide toward therapy of metastasized cancer diseases. It can be produced in nuclear research reactors, irradiating isotopically-enriched 168Er2O3. This path, however, is not suitable for receptor-targeted radionuclide therapy, where high specific molar activities are required. In this study, an electromagnetic isotope separation technique was applied after neutron irradiation to boost the specific activity by separating 169Er from 168Er targets. The separation efficiency increased up to 0.5% using resonant laser ionization. A subsequent chemical purification process was developed as well as activity standardization of the radionuclidically pure 169Er. The quality of the 169Er product permitted radiolabeling and pre-clinical studies. A preliminary in vitro experiment was accomplished, using a 169Er-PSMA-617, to show the potential of 169Er to reduce tumor cell viability.

5.
Phys Rev Lett ; 125(7): 073001, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32857542

ABSTRACT

Two lowest-energy odd-parity atomic levels of actinium, 7s^{2}7p^{2}P_{1/2}^{o}, 7s^{2}7p^{2}P_{3/2}^{o}, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm^{-1}. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to ^{2}P_{3/2}^{o}. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficient laser cooling and ionization schemes for actinium, with possible applications for high-purity medical-isotope production and future fundamental physics experiments.

SELECTION OF CITATIONS
SEARCH DETAIL