Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38082902

ABSTRACT

In brain imaging research, it is becoming standard practice to remove the face from the individual's 3D structural MRI scan to ensure data privacy standards are met. Face removal - or 'defacing' - is being advocated for large, multi-site studies where data is transferred across geographically diverse sites. Several methods have been developed to limit the loss of important brain data by accurately and precisely removing non-brain facial tissue. At the same time, deep learning methods such as convolutional neural networks (CNNs) are increasingly being used in medical imaging research for diagnostic classification and prognosis in neurological diseases. These neural networks train predictive models based on patterns in large numbers of images. Because of this, defacing scans could remove informative data. Here, we evaluated 4 popular defacing methods to identify the effects of defacing on 'brain age' prediction - a common benchmarking task of predicting a subject's chronological age from their 3D T1-weighted brain MRI. We compared brain-age calculations using defaced MRIs to those that were directly brain extracted, and those with both brain and face. Significant differences were present when comparing average per-subject error rates between algorithms in both the defaced brain data and the extracted facial tissue. Results also indicated brain age accuracy depends on defacing and the choice of algorithm. In a secondary analysis, we also examined how well comparable CNNs could predict chronological age from the facial region only (the extracted portion of the defaced image), as well as visualize areas of importance in facial tissue for predictive tasks using CNNs. We obtained better performance in age prediction when using the extracted face portion alone than images of the brain, suggesting the need for caution when defacing methods are used in medical image analysis.


Subject(s)
Algorithms , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neuroimaging
2.
Article in English | MEDLINE | ID: mdl-38083493

ABSTRACT

Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of the midCC from T1w, T2w, and FLAIR images. We train a UNet on images from multiple public datasets to obtain midCC segmentations. A quality control algorithm is also built-in, trained on the midCC shape features. We calculate intraclass correlations (ICC) and average Dice scores in a test-retest dataset to assess segmentation reliability. We test our segmentation on poor quality and partial brain scans. We highlight the biological significance of our extracted features using data from over 40,000 individuals from the UK Biobank; we classify clinically defined shape abnormalities and perform genetic analyses.


Subject(s)
Brain Diseases , Corpus Callosum , Humans , Corpus Callosum/diagnostic imaging , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
3.
Hum Brain Mapp ; 44(14): 4875-4892, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37471702

ABSTRACT

Recent work within neuroimaging consortia have aimed to identify reproducible, and often subtle, brain signatures of psychiatric or neurological conditions. To allow for high-powered brain imaging analyses, it is often necessary to pool MR images that were acquired with different protocols across multiple scanners. Current retrospective harmonization techniques have shown promise in removing site-related image variation. However, most statistical approaches may over-correct for technical, scanning-related, variation as they cannot distinguish between confounded image-acquisition based variability and site-related population variability. Such statistical methods often require that datasets contain subjects or patient groups with similar clinical or demographic information to isolate the acquisition-based variability. To overcome this limitation, we consider site-related magnetic resonance (MR) imaging harmonization as a style transfer problem rather than a domain transfer problem. Using a fully unsupervised deep-learning framework based on a generative adversarial network (GAN), we show that MR images can be harmonized by inserting the style information encoded from a single reference image, without knowing their site/scanner labels a priori. We trained our model using data from five large-scale multisite datasets with varied demographics. Results demonstrated that our style-encoding model can harmonize MR images, and match intensity profiles, without relying on traveling subjects. This model also avoids the need to control for clinical, diagnostic, or demographic information. We highlight the effectiveness of our method for clinical research by comparing extracted cortical and subcortical features, brain-age estimates, and case-control effect sizes before and after the harmonization. We showed that our harmonization removed the site-related variances, while preserving the anatomical information and clinical meaningful patterns. We further demonstrated that with a diverse training set, our method successfully harmonized MR images collected from unseen scanners and protocols, suggesting a promising tool for ongoing collaborative studies. Source code is released in USC-IGC/style_transfer_harmonization (github.com).


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Neuroimaging , Brain/diagnostic imaging
4.
ArXiv ; 2023 May 01.
Article in English | MEDLINE | ID: mdl-37205260

ABSTRACT

Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of the midCC from T1w, T2w, and FLAIR images. We train a UNet on images from multiple public datasets to obtain midCC segmentations. A quality control algorithm is also built-in, trained on the midCC shape features. We calculate intraclass correlations (ICC) and average Dice scores in a test-retest dataset to assess segmentation reliability. We test our segmentation on poor quality and partial brain scans. We highlight the biological significance of our extracted features using data from over 40,000 individuals from the UK Biobank; we classify clinically defined shape abnormalities and perform genetic analyses.

5.
bioRxiv ; 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37163066

ABSTRACT

In brain imaging research, it is becoming standard practice to remove the face from the individual's 3D structural MRI scan to ensure data privacy standards are met. Face removal - or 'defacing' - is being advocated for large, multi-site studies where data is transferred across geographically diverse sites. Several methods have been developed to limit the loss of important brain data by accurately and precisely removing non-brain facial tissue. At the same time, deep learning methods such as convolutional neural networks (CNNs) are increasingly being used in medical imaging research for diagnostic classification and prognosis in neurological diseases. These neural networks train predictive models based on patterns in large numbers of images. Because of this, defacing scans could remove informative data. Here, we evaluated 4 popular defacing methods to identify the effects of defacing on 'brain age' prediction - a common benchmarking task of predicting a subject's chronological age from their 3D T1-weighted brain MRI. We compared brain-age calculations using defaced MRIs to those that were directly brain extracted, and those with both brain and face. Significant differences were present when comparing average per-subject error rates between algorithms in both the defaced brain data and the extracted facial tissue. Results also indicated brain age accuracy depends on defacing and the choice of algorithm. In a secondary analysis, we also examined how well comparable CNNs could predict chronological age from the facial region only (the extracted portion of the defaced image), as well as visualize areas of importance in facial tissue for predictive tasks using CNNs. We obtained better performance in age prediction when using the extracted face portion alone than images of the brain, suggesting the need for caution when defacing methods are used in medical image analysis.

6.
Proc IEEE Int Symp Biomed Imaging ; 2021: 1288-1291, 2021 Apr.
Article in English | MEDLINE | ID: mdl-35321153

ABSTRACT

Quality control (QC) is a vital step for all scientific data analyses and is critically important in the biomedical sciences. Image segmentation is a common task in medical image analysis, and automated tools to segment many regions from human brain MRIs are now well established. However, these methods do not always give anatomically correct labels. Traditional methods for QC tend to reject statistical outliers, which may not necessarily be inaccurate. Here, we make use of a large database of over 12,000 brain images that contain 68 parcellations of the human cortex, each of which was assessed for anatomical accuracy by a human rater. We trained three machine learning models to determine if a region was anatomically accurate (as 'pass', or 'fail') and tested the performance on an independent dataset. We found good performance for the majority of labeled regions. This work will facilitate more anatomically accurate large-scale multi-site research.

7.
Proc IEEE Int Symp Biomed Imaging ; 2021: 1145-1149, 2021 Apr.
Article in English | MEDLINE | ID: mdl-35321154

ABSTRACT

Magnetic resonance imaging (MRI) has a potential for early diagnosis of individuals at risk for developing Alzheimer's disease (AD). Cognitive performance in healthy elderly people and in those with mild cognitive impairment (MCI) has been associated with measures of cortical gyrification [1] and thickness (CT) [2], yet the extent to which sulcal measures can help to predict AD conversion above and beyond CT measures is not known. Here, we analyzed 721 participants with MCI from phases 1 and 2 of the Alzheimer's Disease Neuroimaging Initiative, applying a two-state Markov model to study the conversion from MCI to AD condition. Our preliminary results suggest that MRI-based cortical features, including sulcal morphometry, may help to predict conversion from MCI to AD.

SELECTION OF CITATIONS
SEARCH DETAIL
...