Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131491, 2024 May.
Article in English | MEDLINE | ID: mdl-38599435

ABSTRACT

Quetiapine hemifumarate (QF) delivery to the CNS via conventional formulations is challenging due to poor solubility and lower oral bioavailability (9 %). Similarly, many other second-generation antipsychotics, such as olanzapine, clozapine, and paliperidone, have also shown low oral bioavailability of <50 %. Hence, the present work was intended to formulate QF-loaded biodegradable PLGA-NPs with appropriate surface charge modification through poloxamer-chitosan and investigate its targeting potential on RPMI-2650 cell lines to overcome the limitations of conventional therapies. QF-loaded poloxamer-chitosan-PLGA in-situ gel (QF-PLGA-ISG) was designed using emulsification and solvent evaporation techniques. Developed QF-PLGA-ISG were subjected to evaluation for particle size, PDI, zeta potential, ex-vivo mucoadhesion, entrapment efficiency (%EE), and drug loading, which revealed 162.2 nm, 0.124, +20.5 mV, 52.4 g, 77.5 %, and 9.7 %, respectively. Additionally, QF-PLGA formulation showed >90 % release within 12 h compared to 80 % of QF-suspension, demonstrating that the surfactant with chitosan-poloxamer polymers could sustainably release medicine across the membrane. Ex-vivo hemolysis study proved that developed PLGA nanoparticles did not cause any hemolysis compared to negative control. Further, in-vitro cellular uptake and transepithelial permeation were assessed using the RPMI-2650 nasal epithelial cell line. QF-PLGA-ISG not only improved intracellular uptake but also demonstrated a 1.5-2-fold increase in QF transport across RPMI-2650 epithelial monolayer. Further studies in the EpiNasal™ 3D nasal tissue model confirmed the safety and efficacy of the developed QF-PLGA-ISG formulation with up to a 4-fold increase in transport compared to plain QF after 4 h. Additionally, histological reports demonstrated the safety of optimized formulation. Finally, favorable outcomes of IN QF-PLGA-ISG formulation could provide a novel platform for safe and effective delivery of QF in schizophrenic patients.


Subject(s)
Administration, Intranasal , Chitosan , Drug Carriers , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Quetiapine Fumarate , Chitosan/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Quetiapine Fumarate/pharmacokinetics , Quetiapine Fumarate/administration & dosage , Quetiapine Fumarate/chemistry , Quetiapine Fumarate/pharmacology , Humans , Drug Carriers/chemistry , Drug Liberation , Particle Size , Animals , Cell Line , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects
3.
Food Sci Nutr ; 12(1): 48-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268871

ABSTRACT

Vitamins are crucial for sustaining life because they play an essential role in numerous physiological processes. Vitamin deficiencies can lead to a wide range of severe health issues. In this context, there is a need to administer vitamin supplements through appropriate routes, such as the oral route, to ensure effective treatment. Therefore, understanding the pharmacokinetics of vitamins provides critical insights into absorption, distribution, and metabolism, all of which are essential for achieving the desired pharmacological response. In this review paper, we present information on vitamin deficiencies and emphasize the significance of understanding vitamin pharmacokinetics for improved clinical research. The pharmacokinetics of several vitamins face various challenges, and thus, this work briefly outlines the current issues and their potential solutions. We also discuss the feasibility of enhanced nanocarrier-based pharmaceutical formulations for delivering vitamins. Recent studies have shown a preference for nanoformulations, which can address major limitations such as stability, solubility, absorption, and toxicity. Ultimately, the pharmacokinetics of pharmaceutical dosage forms containing vitamins can impede the treatment of diseases and disorders related to vitamin deficiency.

4.
Brain Res ; 1822: 148674, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37952871

ABSTRACT

The tight junction of endothelial cells in the central nervous system (CNS) has an ideal characteristic, acting as a biological barrier that can securely regulate the movement of molecules in the brain. Tightly closed astrocyte cell junctions on blood capillaries are the blood-brain barrier (BBB). This biological barrier prohibits the entry of polar drugs, cells, and ions, which protect the brain from harmful toxins. However, delivering any therapeutic agent to the brain in neurodegenerative disorders (i.e., schizophrenia, multiple sclerosis, etc.) is extremely difficult. Active immune responses such as microglia, astrocytes, and lymphocytes cross the BBB and attack the nerve cells, which causes the demyelination of neurons. Therefore, there is a hindrance in transmitting electrical signals properly, resulting in blindness, paralysis, and neuropsychiatric problems. The main objective of this article is to shed light on the performance of biomaterials, which will help researchers to create nanocarriers that can cross the blood-brain barrier and achieve a therapeutic concentration of drugs in the CNS of patients with multiple sclerosis (MS). The present review focuses on the importance of biomaterials with diagnostic and therapeutic efficacy that can help enhance multiple sclerosis therapeutic potential. Currently, the development of MS in animal models is limited by immune responses, which prevent MS induction in healthy animals. Therefore, this article also showcases animal models currently used for treating MS. A future advance in developing a novel effective strategy for treating MS is now a potential area of research.


Subject(s)
Multiple Sclerosis , Neurodegenerative Diseases , Animals , Humans , Multiple Sclerosis/drug therapy , Endothelial Cells/physiology , Central Nervous System , Blood-Brain Barrier , Models, Animal , Neurodegenerative Diseases/drug therapy
5.
Int J Pharm ; 648: 123566, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37918496

ABSTRACT

Second-generation antipsychotics, quetiapine hemifumarate (QF), exhibited highly active against negative and positive signs of psychosis. However, contemporary reports have shown that long-term therapy with QF causes lethal thrombocytopenia and leukopenia. Hence, to circumvent the drawbacks of available therapies, the current work aimed to design a QF-loaded biodegradable nanoemulsion (QF-NE) with suitable surface charge modification by poloxamer-chitosan and evaluate its targeting efficiency against RPMI-2650 cell lines. QF-loaded poloxamer-chitosan in-situ gel (QF-Nanoemulgel) was formulated through the O/W emulsification aqueous titration technique and optimized using the QbD approach. Optimized QF-Nanoemulgel subjected to evaluate for globule size, PDI, zeta potential, %T, viscosity, %EE, and ex-vivo mucoadhesive strength were found to be 15.0 ± 0.3 nm, 0.05 ± 0.001, -18.3 ± 0.2 mV, 99.8 ± 0.8 %, 13.5 ± 2.1 cP, 69.0 ± 1.5 %, and 43.7 ± 1.5 g, respectively. QF-Nanoemulgel revealed sustained release and obeyed zero-order kinetics compared to QF-NE and QF-suspension. Additionally, nanoformulations treated blood samples did not cause hemolytic activity compared to drug and negative control after 10 h treatment. Further, in-vitro cytotoxicity, cellular uptake, and permeation of 12.5 and 25 µM QF-Nanoemulgel were assessed on RPMI-2650 cells and discovered nontoxic with 0.55 ± 0.02 µg and 1.1 ± 0.04 µg cellular permeation, respectively, which ensured the safety and potency of QF-Nanogel. Current research revealed the successful development of intranasal QF-Nanoemulgel as a novel dosage form for the safe and effective delivery of QF in schizophrenia patients.


Subject(s)
Antipsychotic Agents , Chitosan , Humans , Quetiapine Fumarate/metabolism , Poloxamer , Chitosan/metabolism , Antipsychotic Agents/pharmacology , Brain/metabolism
6.
Int J Pharm ; 629: 122372, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36351503

ABSTRACT

Octreotide acetate (OA), a potent octapeptide, is used in the treatment of pituitary adenoma. An approach has been made in the present research to formulate an OA-loaded intranasal in situ gel (OA-ISG) to target pituitary adenoma. To achieve the objective of the present work, OA-ISG was fabricated using cold method, and further optimization was done by 32 factorial design. The optimized formulation was evaluated for gelation temperature, mucoadhesive strength, and % drug release (8 h), and the results were found to be 30.01 ± 0.4 °C, 40.12 ± 0.5 g, and 98.54 ± 0.45 %, respectively. Brain availability of OA was determined through gamma scintigraphy, wherein Cmax for technetium (99mTC) labeled intranasal OA-ISG (99mTC-OA-ISG) was found to be 1.041 % RA/g, and the findings for 99mTC-OA-Solution (intranasal) and 99mTC-OA-Solution (intravenous) were 0.395 % and 0.164 % RA/g, respectively. Consequently, a 3-10-fold increase in brain OA concentrations was observed upon intranasal administration (OA-ISG) as compared to others. Additionally, drug targeting index (100.13), targeting efficiency (10013 %), and direct transport percentage (2564.1 %) corroborate brain targeting of OA via intranasal route. Further, the cytotoxic potential of OA-ISG was screened on human pituitary tumor (GH3) cell lines using MTT assay. The IC50 value was found to be 9.5 µg/mL for OA-ISG, whereas it was 20.1 µg/mL for OA-Solution, thereby confirming the superior results of OA-ISG as compared to OA-Solution. Hence, the developed intranasal OA-ISG can be further explored for establishing its potential clinical safety, and as effective platform for targeted drug delivery to the brain in pituitary adenoma.


Subject(s)
Pituitary Neoplasms , Humans , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/metabolism , Octreotide/metabolism , Octreotide/pharmacology , Tissue Distribution , Administration, Intranasal , Brain/metabolism , Drug Delivery Systems/methods , Technetium , Nasal Mucosa/metabolism
7.
Int J Pharm ; 607: 121050, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34454028

ABSTRACT

Unfavorable side effects of available antipsychotics limit the use of conventional delivery systems, where limited exposure of the drugs to the systemic circulation could reduce the associated risks. The potential of intranasal delivery is gaining interest to treat brain disorders by delivering the drugs directly to the brain circumventing the tight junctions of the blood-brain barrier with limited systemic exposure of the entrapped therapeutic. Therefore, the present research was aimed to fabricate, optimize and investigate the therapeutic efficacy of amisulpride (AMS)-loaded intranasal in situ nanoemulgel (AMS-NG) in the treatment of schizophrenia. In this context, AMS nanoemulsion (AMS-NE) was prepared by employing aqueous-titration method and optimized using Box-Behnken statistical design. The optimized nanoemulsion was subjected to evaluation of globule size, transmittance, zeta potential, and mucoadhesive strength, which were found to be 92.15 nm, 99.57%, -18.22 mV, and 8.90 g, respectively. The AMS-NE was converted to AMS-NG using poloxamer 407 and gellan gum. Following pharmacokinetic evaluation in Wistar rats, the brain Cmax for intranasal AMS-NG was found to be 1.48-folds and 3.39-folds higher when compared to intranasal AMS-NE and intravenous AMS-NE, respectively. Moreover, behavioral investigations of developed formulations were devoid of any extrapyramidal side effects in the experimental model. Finally, outcomes of the in vivo hematological study confirmed that intranasal administration of formulation for 28 days did not alter leukocytes and agranulocytes count. In conclusion, the promising results of the developed and optimized intranasal AMS-NG could provide a novel platform for the effective and safe delivery of AMS in schizophrenic patients.


Subject(s)
Nanoparticles , Poloxamer , Administration, Intranasal , Amisulpride , Animals , Brain , Drug Delivery Systems , Humans , Lipids , Nasal Mucosa , Particle Size , Polysaccharides, Bacterial , Rats , Rats, Wistar
8.
Int J Biol Macromol ; 167: 906-920, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33186648

ABSTRACT

The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 µg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 µg/mL for TNLCGHG, 4.8 µg/mL for pure TFM, and 78.5 µg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.


Subject(s)
Acrylic Resins/chemistry , Crotonates/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Lipids/chemistry , Nanogels/chemistry , Polysaccharides, Bacterial/chemistry , Toluidines/administration & dosage , Administration, Intranasal , Animals , Brain/drug effects , Brain/metabolism , Calorimetry, Differential Scanning , Cell Line, Tumor , Chemical Phenomena , Chromatography, High Pressure Liquid , Glioma/drug therapy , Hydroxybutyrates , Nanoparticles/chemistry , Nitriles , Particle Size , X-Ray Diffraction
9.
Pharm Dev Technol ; 25(1): 28-39, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31441694

ABSTRACT

Purpose: Development of delivery tool for the existing antiretroviral drugs against the neuronal-AIDS in itself is a big challenge because of blood-brain-barrier (BBB). Aim of present research is to formulate efavirenz (EFV) based mucoadhesive microemulsion (EMME) and investigates its efficiency through intranasal delivery.Methods: The EFV microemulsion (EME) was formulated by aqueous titration method. The formulation was screened for globule size, zeta potential and encapsulation efficiency. Bio-distribution of EFV was performed by gamma scintigraphy. Safety of optimized formulation was demonstrated using biochemical, hematological and histopathological data.Results: Experimental data demonstrate that optimized formulation showed significant size (19.04 nm), zeta potential (-32.2 mV) and entrapment efficiency (98.39%). The results of Cmax value suggested that intranasal (i.n.) 99mTc-EMME is able to improve the brain uptake of EFV around 2 folds more than i.n. 99mTC-EME and intravenous (i.v.) 99mTC-EME administrations. The drug targeting index (DTI= 10), drug targeting efficiency (DTE = 1000%) and direct transport percentage (DTP = 89%) were found highly significant for EMME (i.n.) than EME (i.n.). In vivo safety evaluation studies on experimental animals for biochemical, hematological and histopathological parameters remain unchanged.Conclusions: Hence, the intranasal delivery of EMME can be safe and effective tool in the treatment of neuronal-AIDS.


Subject(s)
Acquired Immunodeficiency Syndrome/metabolism , Benzoxazines/pharmacokinetics , Central Nervous System/metabolism , Emulsions/pharmacokinetics , Nasal Mucosa/metabolism , Neurons/metabolism , Administration, Intranasal/methods , Alkynes , Animals , Blood-Brain Barrier/metabolism , Cyclopropanes , Drug Delivery Systems/methods , Male , Rats , Rats, Wistar , Tissue Distribution
10.
Drug Dev Ind Pharm ; 45(5): 839-851, 2019 May.
Article in English | MEDLINE | ID: mdl-30702966

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is one of the most severe autoimmune disorder of the central nervous system (CNS). OBJECTIVE: The present research work was aimed to formulate and investigate teriflunomide (TFM)-loaded intranasal (i.n.) nanostructured lipid carriers (NLC) for the treatment of multiple sclerosis (MS). METHODS: The TFM-loaded NLC (TFM-NLC) nanoparticles were prepared by melt emulsification ultrasonication method using biodegradable and biocompatible polymers. The Box-Behnken statistical design was applied to optimize the formulation. The optimized NLC formulation was subjected to evaluate for particle size, entrapment efficiency (%), in vitro and ex vivo permeation. The safety and efficacy of optimized formulations were demonstrated using pharmacodynamic, subacute toxicity and hepatotoxicity data. RESULTS: Experimental data demonstrated that optimized NLC formulation (F17) showed significant size (99.82 ± 1.36 nm), zeta potential (-22.29 ± 1.8 mV) and % entrapment efficiency (83.39 ± 1.24%). Alternatively, ex vivo permeation of TFM mucoadhesive NLC (TFM-MNLC) and TFM-NLC was observed 830 ± 7.6 and 651 ± 9.8 µg/cm2, respectively. Whereas, TFM-MNLC shows around 2.0-folds more Jss than the TFM-NLC. Finally, TFM-MNLC (i.n.) formulation produced the rapid remyelination in cuprizone-treated animals and decreases the number of entries in open compartment of EPM when compared with negative control and TFM-NLC (oral) animals. Simultaneously, the nanoformulation did not reflect any gross changes in hepatic biomarkers and subacute toxicity when compared with control. CONCLUSIONS: Hence it can be inferred that the nose-to-brain delivery of TFM-MNLC can be considered as effective and safe delivery for brain disorders.


Subject(s)
Crotonates/administration & dosage , Drug Carriers/chemistry , Multiple Sclerosis/drug therapy , Toluidines/administration & dosage , Adhesiveness , Administration, Intranasal , Administration, Oral , Animals , Biocompatible Materials/chemistry , Biomarkers/metabolism , Crotonates/pharmacokinetics , Cuprizone/toxicity , Disease Models, Animal , Drug Liberation , Humans , Hydroxybutyrates , Lipids/chemistry , Liver/drug effects , Liver/metabolism , Male , Multiple Sclerosis/chemically induced , Nanoparticles/chemistry , Nasal Mucosa/metabolism , Nitriles , Particle Size , Polymers/chemistry , Rats , Rats, Wistar , Sheep , Toluidines/pharmacokinetics , Toxicity Tests, Subacute
11.
AAPS PharmSciTech ; 20(1): 22, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30604305

ABSTRACT

Potential risk of agranulocytosis is one of the drug-induced adverse effects of the second-generation antipsychotic agents. The present investigation aimed to formulate and investigate olanzapine (OLZ)-loaded nanostructured lipid carriers (OLZ-NLCs) via intranasal (i.n.) route. The NLC was prepared by melt emulsification method and optimized by Box-Behnken design. Mucoadhesive NLC was prepared by using 0.4% Carbopol 974P (OLZ-MNLC (C)) and the combination of 17% poloxamer 407 and 0.3% of HPMC K4M (OLZ-MNLC (P+H)). The particle size, zeta potential, and entrapment efficiency were found to be 88.95 nm ± 1.7 nm, - 22.62 mV ± 1.9 mV, and 88.94% ± 3.9%, respectively. Ex vivo permeation of OLZ-NLC, OLZ-MNLC (P+H), and OLZ-MNLC (C) was found to be 545.12 µg/cm2 ± 12.8 µg/cm2, 940.02 µg/cm2 ± 15.5 µg/cm2, and 820.10 µg/cm2 ± 11.3 µg/cm2, respectively, whereas the OLZ-MNLC (P+H) formulation showed rapid drug permeation than the OLZ-NLC and OLZ-MNLC (C) formulations. The OLZ-MNLC (P+H) formulation was shown to have 13.57- and 27.64-fold more Jss than the OLZ-MNLC (C) and OLZ-NLC formulations. The OLZ nanoformulations showed sustained release of up to 8 h. Finally, the brain Cmax of technetium-99m (99mTc)-OLZ-MNLC (i.n.) and 99mTc-OLZ-NLC (i.v.) was found to be 936 ng and 235 ng, respectively, whereas the Cmax of i.n. administration was increased 3.98-fold more than the Cmax of i.v. administration. The in vivo hematological study of OLZ-MNLC (P+H) confirmed that the i.n. formulation did not reflect any variation in leukocyte, RBC and platelet counts. Hence, it can be concluded that the nose-to-brain delivery of OLZ-MNLC (P+H) can be considered as an effective and safe delivery for CNS disorders.


Subject(s)
Agranulocytosis/prevention & control , Central Nervous System/drug effects , Drug Carriers/administration & dosage , Nanoparticles/administration & dosage , Nanostructures/administration & dosage , Olanzapine/administration & dosage , Administration, Intranasal , Animals , Central Nervous System/metabolism , Chemical Engineering/methods , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Delivery Systems/methods , Lipids , Male , Mice , Nanoparticles/chemistry , Nanoparticles/metabolism , Nanostructures/chemistry , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Olanzapine/chemistry , Olanzapine/metabolism , Particle Size , Rats , Rats, Wistar , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...