Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 94(4): 1232-1245, 2018 10.
Article in English | MEDLINE | ID: mdl-30111649

ABSTRACT

The binding site for DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one], a positive allosteric modulator (PAM) of the dopamine D1 receptor, was identified and compared with the binding site for CID 2886111 [N-(6-tert-butyl-3-carbamoyl-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)pyridine-4-carboxamide], a reference D1 PAM. From D1/D5 chimeras, the site responsible for potentiation by DETQ of the increase in cAMP in response to dopamine was narrowed down to the N-terminal intracellular quadrant of the receptor; arginine-130 in intracellular loop 2 (IC2) was then identified as a critical amino acid based on a human/rat species difference. Confirming the importance of IC2, a ß2-adrenergic receptor construct in which the IC2 region was replaced with its D1 counterpart gained the ability to respond to DETQ. A homology model was built from the agonist-state ß2-receptor structure, and DETQ was found to dock to a cleft created by IC2 and adjacent portions of transmembrane helices 3 and 4 (TM3 and TM4). When residues modeled as pointing into the cleft were mutated to alanine, large reductions in the potency of DETQ were found for Val119 and Trp123 (flanking the conserved DRY sequence in TM3), Arg130 (located in IC2), and Leu143 (TM4). The D1/D5 difference was found to reside in Ala139; changing this residue to methionine as in the D5 receptor reduced the potency of DETQ by approximately 1000-fold. None of these mutations affected the activity of CID 2886111, indicating that it binds to a different allosteric site. When combined, DETQ and CID 2886111 elicited a supra-additive response in the absence of dopamine, implying that both PAMs can bind to the D1 receptor simultaneously.


Subject(s)
Allosteric Regulation/physiology , Allosteric Site/physiology , Receptors, Dopamine D1/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Amino Acids/metabolism , Animals , Cell Line , Conserved Sequence/drug effects , Conserved Sequence/physiology , Dopamine/metabolism , HEK293 Cells , Humans , Isoquinolines/pharmacology , Rats
2.
Curr Top Med Chem ; 7(11): 1052-67, 2007.
Article in English | MEDLINE | ID: mdl-17584126

ABSTRACT

The recent emergence of obesity as a major health threat in the industrialized world has intensified the search for novel and effective pharmacologic treatment. The proopiomelanocortin (POMC)-melanocortin 4 receptor (MC4R) axis has been shown to regulate food intake and energy homeostasis and is considered among the most promising antiobesity targets. Our initial efforts in this area have focused on affinity and selectivity directed optimization of the native beta-MSH(5-22) sequence and resulted in the discovery of a potent MC4R agonist: Ac-Tyr-Arg-[Cys-Glu-His-D-Phe-Arg-Trp-Cys]-NH(2) (10). Subcutaneous administration of this peptide produced an excellent in vivo efficacy in reducing food intake and increasing fat metabolism. Additionally, suppression of food intake was observed in wild type but not in MC4R deficient mice, suggesting that the effects observed in the wild type mice were mediated through MC4R signaling. Subsequent optimization efforts led to the identification of a novel series of disulfide constrained hexapeptides as exemplified by Ac-[hCys-His-D-Phe-Arg-Trp-Cys]-NH(2) (100). These cyclic hexapeptides showed a further improved potency in binding MC4R and an enhanced selectivity over MC1R. At a dose of 0.07 mg/kg analog 102 reduced food intake by 38% and increased fat utilization by 58% in rats. These cyclic peptides provide novel and enhanced reagents for the elucidation of melanocortin receptors biology and may find applications in the treatment of obesity and related metabolic disorders.


Subject(s)
Receptor, Melanocortin, Type 4/agonists , beta-MSH/chemistry , beta-MSH/pharmacology , Amino Acids/chemistry , Animals , Computer Simulation , Disulfides/chemistry , Humans , Receptor, Melanocortin, Type 4/metabolism , Structure-Activity Relationship , beta-MSH/chemical synthesis
3.
Bioorg Med Chem Lett ; 16(13): 3415-8, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16677814

ABSTRACT

The synthesis and biological evaluation of novel tetrahydroisoquinoline, tetrahydroquinoline, and tetrahydroazepine antagonists of the human and rat H(3) receptors are described. The substitution around these rings as well as the nature of the substituent on nitrogen is explored. Several compounds with high affinity and selectivity for the human and rat H(3) receptors are reported.


Subject(s)
Azepines , Receptors, Histamine H3/drug effects , Tetrahydroisoquinolines/chemical synthesis , Animals , Azepines/chemical synthesis , Azepines/chemistry , Azepines/pharmacology , Drug Evaluation, Preclinical , Humans , Molecular Structure , Rats , Structure-Activity Relationship , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/pharmacology
4.
J Med Chem ; 48(9): 3095-8, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15857110

ABSTRACT

A series of novel, disulfide-constrained human beta-melanocyte stimulating hormone (beta-MSH)-derived peptides were optimized for in vitro melanocortin-4 receptor (MC-4R) binding affinity, agonist efficacy, and selectivity. The most promising of these, analogue 18, was further studied in vivo using chronic rat food intake and body weight models.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Oligopeptides/chemical synthesis , Receptor, Melanocortin, Type 4/agonists , beta-MSH/chemistry , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Body Weight/drug effects , Cell Line , Eating/drug effects , Humans , Oligopeptides/chemistry , Oligopeptides/pharmacology , Radioligand Assay , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL