Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3668, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699271

ABSTRACT

Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones. Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement. Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs.


Subject(s)
Adaptation, Physiological , Environmental Restoration and Remediation/methods , Hydrocharitaceae/physiology , Wetlands , Zosteraceae/physiology , Biodegradable Plastics , Biomimetics/methods , Ecology/methods , Environmental Restoration and Remediation/instrumentation , Florida , Netherlands , Seawater , Sweden , Tropical Climate , West Indies
2.
Environ Manage ; 53(1): 147-62, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24100942

ABSTRACT

Healthy seagrass is considered a prime indicator of estuarine ecosystem function. On the Pacific coast of North America, at least two congeners of Zostera occur: native Zostera marina, and introduced, Zostera japonica. Z. japonica is considered "invasive" and therefore, ecologically and economically harmful by some, while others consider it benign or perhaps beneficial. Z. japonica does not appear on the Federal or the Oregon invasive species or noxious weed lists. However, the State of California lists it as both an invasive and noxious weed; Washington State recently listed it as a noxious weed. We describe the management dynamics in North America with respect to these congener species and highlight the science and policies behind these decisions. In recent years, management strategies at the state level have ranged from historical protection of Z. japonica as a priority habitat in Washington to eradication in California. Oregon and British Columbia, Canada appear to have no specific policies with regard to Z. japonica. This fractured management approach contradicts efforts to conserve and protect seagrass in other regions of the US and around the world. Science must play a critical role in the assessment of Z. japonica ecology and the immediate and long-term effects of management actions. The information and recommendations provided here can serve as a basis for providing scientific data in order to develop better informed management decisions and aid in defining a uniform management strategy for Z. japonica.


Subject(s)
Introduced Species , Zosteraceae/physiology , Conservation of Natural Resources , Ecosystem , North America , Plant Dispersal , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...