Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 58(22): 2477-2494.e8, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37875118

ABSTRACT

Cilia protrude from the cell surface and play critical roles in intracellular signaling, environmental sensing, and development. Reduced actin-dependent contractility and intracellular trafficking are both required for ciliogenesis, but little is known about how these processes are coordinated. Here, we identified a Rac1- and Rab35-binding protein with a truncated BAR (Bin/amphiphysin/Rvs) domain that we named MiniBAR (also known as KIAA0355/GARRE1), which plays a key role in ciliogenesis. MiniBAR colocalizes with Rac1 and Rab35 at the plasma membrane and on intracellular vesicles trafficking to the ciliary base and exhibits fast pulses at the ciliary membrane. MiniBAR depletion leads to short cilia, resulting from abnormal Rac-GTP/Rho-GTP levels and increased acto-myosin-II-dependent contractility together with defective trafficking of IFT88 and ARL13B into cilia. MiniBAR-depleted zebrafish embryos display dysfunctional short cilia and hallmarks of ciliopathies, including left-right asymmetry defects. Thus, MiniBAR is a dual Rac and Rab effector that controls both actin cytoskeleton and membrane trafficking for ciliogenesis.


Subject(s)
Cytoskeletal Proteins , Zebrafish , Animals , Zebrafish/metabolism , Cytoskeletal Proteins/metabolism , Signal Transduction , Carrier Proteins/metabolism , Cilia/metabolism , Guanosine Triphosphate/metabolism , rab GTP-Binding Proteins/metabolism
2.
Mol Metab ; 76: 101772, 2023 10.
Article in English | MEDLINE | ID: mdl-37442376

ABSTRACT

OBJECTIVES: Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-ßH5 cells, the latest in the EndoC-ßH cell family. METHODS: EndoC-ßH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-ßH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS: Ready to use EndoC-ßH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-ßH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-ßH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS: EndoC-ßH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.


Subject(s)
Insulin-Secreting Cells , Humans , Insulin-Secreting Cells/metabolism , Insulin Secretion , Cell Line , Insulin/metabolism , Transcription Factors/metabolism , Glucose/metabolism
3.
J Mol Neurosci ; 62(1): 114-122, 2017 May.
Article in English | MEDLINE | ID: mdl-28429234

ABSTRACT

The DNA- and RNA-binding protein fused in sarcoma (FUS) has been pathologically and genetically linked to amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). Cytoplasmic FUS-positive inclusions were identified in the brain and spinal cord of a subset of patients suffering with ALS/FTLD. An increasing number of reports suggest that FUS protein can behave in a prion-like manner. However, no neuropathological studies or experimental data were available regarding cell-to-cell spread of these pathological protein assemblies. In the present report, we investigated the ability of wild-type and mutant forms of FUS to transfer between neuronal cells. We combined the use of Drosophila models for FUS proteinopathies with that of the primary neuronal cultures to address neuron-to-neuron transfer of FUS proteins. Using conditional co-culture models and an optimized flow cytometry-based methodology, we demonstrated that ALS-mutant forms of FUS proteins can transfer between well-differentiated mature Drosophila neurons. These new observations support that a propagating mechanism could be applicable to FUS, leading to the sequential dissemination of pathological proteins over years.


Subject(s)
Mutation , Neurons/metabolism , RNA-Binding Protein FUS/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Cells, Cultured , Drosophila , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/toxicity
4.
J Cell Sci ; 127(Pt 17): 3840-51, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25002399

ABSTRACT

The midbody remnant (MBR) that is generated after cytokinetic abscission has recently attracted a lot of attention, because it might have crucial consequences for cell differentiation and tumorigenesis in mammalian cells. In these cells, it has been reported that the MBR is either released into the extracellular medium or retracted into one of the two daughter cells where it can be degraded by autophagy. Here, we describe a major alternative pathway in a variety of human and mouse immortalized cells, cancer cells and primary stem cells. Using correlative light and scanning electron microscopy and quantitative assays, we found that sequential abscissions on both sides of the midbody generate free MBRs, which are tightly associated with the cell surface through a Ca(2+)/Mg(2+)-dependent receptor. Surprisingly, MBRs move over the cell surface for several hours, before being eventually engulfed by an actin-dependent phagocytosis-like mechanism. Mathematical modeling combined with experimentation further demonstrates that lysosomal activities fully account for the clearance of MBRs after engulfment. This study changes our understanding of how MBRs are inherited and degraded in mammalian cells and suggests a mechanism by which MBRs might signal over long distances between cells.


Subject(s)
Cell Membrane/metabolism , Cytokinesis/physiology , Microtubules/metabolism , Organelles/metabolism , Animals , Cell Line , Cell Membrane/ultrastructure , HeLa Cells/cytology , Humans , Microscopy, Electrochemical, Scanning , Microtubules/ultrastructure , Organelles/ultrastructure , Phagocytosis/physiology
5.
J Mol Cell Biol ; 5(4): 250-65, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23585691

ABSTRACT

Directionality of information flow through neuronal networks is sustained at cellular level by polarized neurons. However, specific targeting or anchoring motifs responsible for polarized distribution on the neuronal surface have only been identified for a few neuronal G-protein-coupled receptors (GPCRs). Here, through mutational and pharmacological modifications of the conformational state of two model GPCRs, the axonal CB1R cannabinoid and the somatodendritic SSTR2 somatostatin receptors, we show important conformation-dependent variations in polarized distribution. The underlying mechanisms include lower efficiency of conformation-dependent GPCR endocytosis in axons, compared with dendrites, particularly at moderate activation levels, as well as endocytosis-dependent transcytotic delivery of GPCRs from the somatodendritic domain to distal axonal portions, shown by using compartmentalized microfluidic devices. Kinetic modeling predicted that GPCR distribution polarity is highly regulated by steady-state endocytosis, which is conformation dependent and is able to regulate the relative amount of GPCRs targeted to axons and that axonally polarized distribution is an intermediary phenotype that appears at moderate basal activation levels. Indeed, we experimentally show that gradual changes in basal activation-dependent endocytosis lead to highly correlated shifts of polarized GPCR distribution on the neuronal surface, which can even result in a fully reversed polarized distribution of naturally somatodendritic or axonal GPCRs. In conclusion, polarized distribution of neuronal GPCRs may have a pharmacologically controllable component, which, in the absence of dominant targeting motifs, could even represent the principal regulator of sub-neuronal distribution. Consequently, chronic modifications of basal GPCR activation by therapeutic or abused drugs may lead to previously unanticipated changes in brain function through perturbation of polarized GPCR distribution on the neuronal surface.


Subject(s)
Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptors, Somatostatin/metabolism , Animals , Axons/metabolism , Cell Polarity , Dendrites/metabolism , Endocytosis/physiology , HEK293 Cells , Humans , Kinetics , Microfluidic Analytical Techniques , Models, Biological , Nerve Net/metabolism , Nerve Net/physiology , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/physiology , Protein Structure, Tertiary , Rats , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB1/physiology , Receptors, Somatostatin/chemistry , Receptors, Somatostatin/physiology , Restriction Mapping
6.
Pharmacology ; 90(1-2): 19-39, 2012.
Article in English | MEDLINE | ID: mdl-22776780

ABSTRACT

The type-1 cannabinoid receptor (CB1R) was initially identified as the neuronal target of Δ(9)-tetrahydrocannabinol (THC), the major psychoactive substance of marijuana. This receptor is one of the most abundant G-protein-coupled receptors in the adult brain, the target of endocannabinoid ligands and a well-characterized retrograde synaptic regulator. However, CB1Rs are also highly and often transiently expressed in neuronal populations in the embryonic and early postnatal brain, even before the formation of synapses. This suggests important physiological roles for CB1Rs during neuronal development. Several recent reviews have summarized our knowledge about the role of the endocannabinoid (eCB) system in neurodevelopment and neurotransmission by focusing on the metabolism of endocannabinoid molecules. Here, we review current knowledge about the effects of the modulation of CB1R signaling during the different phases of brain development. More precisely, we focus on reports that directly implicate CB1Rs during progenitor cell migration and differentiation, neurite outgrowth, axonal pathfinding and synaptogenesis. Based on theoretical considerations and on the reviewed experimental data, we propose a new model to explain the diversity of experimental findings on eCB signaling on neurite growth and axonal pathfinding. In our model, cell-autonomus and paracrine eCBs acting on CB1Rs are part of a global inhibitory network of cytoskeletal effectors, which act in concert with positive-feedback local-excitation loops, to ultimately yield highly polarized neurons.


Subject(s)
Neurons/physiology , Receptor, Cannabinoid, CB1/physiology , Animals , Brain/physiology , Endocannabinoids/physiology , Humans , Neurons/cytology , Signal Transduction , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...