Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 5477, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28710428

ABSTRACT

This article aims to evaluate the efficiency of an innovative hybrid Sequential Biofiltration System (SBS) for removing phosphorus and nitrogen and polychlorinated biphenyls (PCBs) from original municipal wastewater produced by a Wastewater Treatment Plant under authentic operating conditions. The hybrid SBS was constructed with two barriers, a geochemical (filtration beds with limestone, coal and sawdust) and a biological barrier (wetlands with Glyceria, Acorus, Typha, Phragmites), operating in parallel. Significant differences were found between inflow and outflow from the SBS with regard to wastewater contaminant concentrations, the efficiency of removal being 16% (max. 93%) for Total Phosphorus (TP), 25% (max. 93%) for Soluble Reactive Phosphorus (SRP), 15% (max. 97%) for Total Nitrogen (TN), 17% (max. 98%) for NO3-N, and 21% for PCB equivalency (PCB EQ). In the case of PCB EQ concentration, the highest efficiency of 43% was obtained using beds with macrophytes. The SBS removed a significant load of TP (0.415 kg), TN (3.136 kg), and PCB EQ (0.223 g) per square meter per year. The use of low-cost hybrid SBSs as a post-treatment step for wastewater treatment was found to be an effective ecohydrological biotechnology that may be used for reducing point source pollution and improving water quality.

2.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Article in English | MEDLINE | ID: mdl-28334256

ABSTRACT

Mechanisms behind expansion of an invasive cyanobacterium Cylindrospermopsis raciborskii have not been fully resolved, and different hypotheses, such as global warming, are suggested. In the East-Central Europe, it is widely occurring in western part of Poland but only in single locations in the East due to some limiting factors. Therefore, broad-scale phytoplankton survey including 117 randomly selected lakes in Poland and Lithuania was conducted. The results showed that C. raciborskii occurred widely in western part of Poland but was absent from other regions and Lithuania except one lake. The regions in which C. raciborskii was present had higher annual mean air temperature, higher maximum air temperature of the warmest month and higher minimum temperature of the coldest month, demonstrating that average air temperature, and indirectly, the duration of growing season might be more important factor driving C. raciborskii distribution than measured in situ water temperature. In turn, the presence of C. raciborskii in single localities may be more related to physiological adaptations of separated ecotype. Collectively, these results provide novel evidence on the influence of temperature on C. raciborskii distribution in East-European regions but also indicate high ecological plasticity of this species.


Subject(s)
Cylindrospermopsis/physiology , Introduced Species , Water Microbiology , Cyanobacteria/physiology , Cylindrospermopsis/isolation & purification , Environmental Monitoring , Europe , Global Warming , Lakes/microbiology , Lithuania , Phytoplankton , Poland , Seasons , Temperature
3.
Bull Environ Contam Toxicol ; 97(2): 249-54, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27107587

ABSTRACT

Although sewage sludge is a rich source of nutrients for arable farming and soil improvement, it can also be a source of pollutants. The effects of the land application of sludge on the PCB and nutrient content of leachate were investigated using cylindrical 650 mm length columns filled with poor quality soil. Treatments included no fertilization (control), fertilization using a 62.5 t/ha dose (O50) of sewage sludge from the largest Polish Wastewater Treatment Plant, in Lodz, and a 62.5 t/ha dose of sewage sludge mixed with CaO (O50Ca). The leaching of sludge-borne PCBs and nutrients was simulated by the application of distilled water in a quantity reflecting the annual rainfall of 562.5 mm. The obtained results demonstrate that application of sewage sludge and water simulated leaching of the most mobile chemical compounds, nitrate for example, whereas the addition of CaO decreased the average PCB and phosphorus concentrations in comparison to the control and O50 samples.


Subject(s)
Agriculture/methods , Fertilizers/analysis , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis , Waste Disposal, Fluid/methods , Environmental Monitoring , Nitrates/analysis , Phosphorus/analysis , Sewage/chemistry , Soil/chemistry
4.
Aquat Toxicol ; 168: 1-10, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26398929

ABSTRACT

Despite the focus of most ecotoxicological studies on cyanobacteria on a select group of cyanotoxins, especially microcystins, a growing body of evidence points to the involvement of other cyanobacterial metabolites in deleterious health effects. In the present study, original, self-developed reporter gene-based cellular biosensors, detecting activation of the main human xenobiotic stress response pathways, PXR and NFkappaB, were applied to detect novel potentially toxic bioactivities in extracts from freshwater microcystin-producing cyanobacterial blooms. Crude and purified extracts from cyanobacteria containing varying levels of microcystins, and standard microcystin-LR were tested. Two cellular biosensor types applied in this study, called NHRTOX (detecting PXR activation) and OXIBIOS (detecting NFkappaB activation), successfully detected potentially toxic or immunomodulating bioactivities in cyanobacterial extracts. The level of biosensor activation was comparable to control cognate environmental toxins. Despite the fact that extracts were derived from microcystin-producing cyanobacterial blooms and contained active microcystins, biosensor-detected bioactivities were shown to be unrelated to microcystin levels. Experimental results suggest the involvement of environmental toxins (causing a response in NHRTOX) and lipopolysaccharides (LPS) or other cell wall components (causing a response in OXIBIOS) in the potentially harmful bioactivity of investigated extracts. These results demonstrate the need for further identification of cyanobacterial metabolites other than commonly studied cyanotoxins as sources of health risk, show the usefulness of cellular biosensors for this purpose and suggest a novel, more holistic approach to environmental monitoring.


Subject(s)
Biosensing Techniques , Cyanobacteria/chemistry , Ecotoxicology/methods , Environmental Monitoring/methods , Microcystins/toxicity , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Environmental Monitoring/standards , Hep G2 Cells , Humans , Marine Toxins , Microcystins/metabolism , Rabbits , Water Pollutants, Chemical/toxicity
5.
Microb Ecol ; 67(2): 465-79, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24241584

ABSTRACT

The aim of this study was to understand: (1) how environmental conditions can contribute to formation of Microcystis-dominated blooms in lowland, dam reservoirs in temperate climate-with the use of quantitative molecular monitoring, and (2) what is the role of toxic Microcystis genotypes in the bloom functioning. Monitoring of the Sulejow Reservoir in 2009 and 2010 in two sites Tresta (TR) and Bronislawow BR), which have different morphometry, showed that physicochemical conditions were always favorable for cyanobacterial bloom formation. In 2009, the average biomass of cyanobacteria reached 13 mg L(-1) (TR) and 8 mg L(-1) (BR), and in the second year, it decreased to approximately 1 mg L(-1) (TR and BR). In turns, the mean number of toxic Microcystis genotypes in the total Microcystis reached 1% in 2009, both in TR and BR, and in 2010, the number increased to 70% in TR and 14 % in BR. Despite significant differences in the biomass of cyanobacteria in 2009 and 2010, the mean microcystins (MCs) concentration and toxicity stayed at a similar level of approximately 1 µg L(-1). Statistical analysis indicated that water retention time was a factor that provided a significant difference between the two monitoring seasons and was considered a driver of the changes occurring in the Sulejow Reservoir. Hydrologic differences, which occurred between two studied years due to heavy flooding in Poland in 2010, influenced the decrease in number of Microcystis biomass by causing water disturbances and by lowering water temperature. Statistical analysis showed that Microcystis aeruginosa biomass and 16S rRNA gene copy number representing Microcystis genotypes in both years of monitoring could be predicted on the basis of total and dissolved phosphorus concentrations and water temperature. In present study, the number of mcyA gene copies representing toxic Microcystis genotypes could be predicted based on the biomass of M. aeruginosa. Moreover, MCs toxicity and concentration could be predicted on the basic of mcyA gene copy number and M. aeruginosa (biomass, 16S rRNA), respectively. Present findings may indicate that Microcystis can regulate the number of toxic genotypes, and in this way adjust the whole bloom to be able to produce MCs at the level which is necessary for its maintenance in the Sulejow Reservoir under stressful hydrological conditions.


Subject(s)
Eutrophication , Genotype , Microcystis/genetics , Microcystis/isolation & purification , Biomass , Chemical Phenomena , DNA, Bacterial/genetics , Environmental Monitoring , Fresh Water/microbiology , Microcystins/biosynthesis , Poland , RNA, Ribosomal, 16S/genetics , Seasons , Sequence Analysis, DNA , Temperature , Water Microbiology
6.
FEMS Microbiol Lett ; 326(2): 173-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22092753

ABSTRACT

The presence of toxigenic cyanobacteria capable of biosynthesis of cylindrospermopsin (CYN) was measured in 24 water samples collected from the lakes Bytynskie (BY) and Bninskie (BN) in the Western Poland. The study also covered analysis of toxigenicity and production of CYN by the culture of Cylindrospermopsis raciborskii isolated from BY. The cyrJ gene associated with CYN production was identified in 22 water samples collected in the summer seasons of 2006 and 2007. The presence of CYN was confirmed in 16 samples. The homology searches revealed that amplified sequences of four water samples, which were selected from among all the samples, displayed a strong 99% homology to cyrJ gene of Aphanizomenon sp. 10E6. The culture of C. raciborskii did not contain the cyrJ gene nor the CYN. The specificity of C. raciborskii was confirmed by application of a fragment of the rpoC1. These first genetic analyses have shown that Aphanizomenon seems to be the main cyanobacterial genus responsible for the production of CYN in the Polish lakes. The lack of toxigenicity of the isolated C. raciborskii suggests that it is possible that this invasive species does not demonstrate toxigenic activity in Polish water bodies.


Subject(s)
Aphanizomenon/isolation & purification , Aphanizomenon/metabolism , Cylindrospermopsis/isolation & purification , Cylindrospermopsis/metabolism , Fresh Water/microbiology , Uracil/analogs & derivatives , Alkaloids , Aphanizomenon/genetics , Bacterial Toxins , Base Sequence , Cyanobacteria Toxins , Cylindrospermopsis/genetics , DNA, Bacterial/genetics , Molecular Sequence Data , Poland , Seasons , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Uracil/metabolism
7.
Environ Toxicol ; 26(1): 10-20, 2011 Feb.
Article in English | MEDLINE | ID: mdl-19658169

ABSTRACT

The presence of toxigenic blooms dominated by filamentous cyanobacterium Planktothrix agardhii with estimation of microcystins (MCs) concentration and toxicity was measured in two lakes: Bytynskie and Lubosinskie situated in Western Poland. Investigations were carried out in summer, autumn, and winter of 2007/2008 and early spring of 2008. In both lakes, a domination of P. agardhii in relation to the total cyanobacterial biomass oscillated, throughout the year, almost on the same level between 75 and 99%. The PCR analysis of mcyE gene indicated a presence of toxigenic strains in all collected samples. In addition, the result of semiquantification of mcyE gene band showed that both lakes seem to have variable, throughout the seasons, toxigenic potential with the highest density of mcyE gene in spring. Two separate methods were used: protein phosphatase inhibition assay for estimation of MCs toxicity (biological activity) and high-performance liquid chromatography for determination of MCs concentration (quantity). The highest seasonal MCs toxicity (15.8 µg/L Bytynskie and 21.9 µg/L Lubosinskie) and concentration (34.6 µg/L Bytynskie and 52.2 µg/L Lubosinskie) were determined in autumn and indicated on a Second Alert Level, according to WHO guidelines for bathing water. The results showed the ability of toxigenic strains of cyanobacteria dominated by P. agardhii to remain and produce MCs during the whole year. This was confirmed by significant correlations between P. agardhii biomass and MCs concentrations in both lakes (r = 0.84, Bninskie and r = 0.79, Lubosinskie; P < 0.05).


Subject(s)
Cyanobacteria/growth & development , Fresh Water/microbiology , Water Pollution/statistics & numerical data , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Environmental Monitoring , Eutrophication , Genes, Bacterial , Microcystins/analysis , Microcystins/toxicity , Poland , Seasons , Water Microbiology , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...