Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240241

ABSTRACT

Mpox (monkeypox) is a zoonotic viral disease caused by the mpox virus (MPXV). Recently in 2022, a multi-country Mpox outbreak has determined great concern as the disease rapidly spreads. The majority of cases are being noticed in European regions and are unrelated to endemic travel or known contact with infected individuals. In this outbreak, close sexual contact appears to be important for MPXV transmission, and an increasing prevalence in people with multiple sexual partners and in men who have sex with men has been observed. Although Vaccinia virus (VACV)-based vaccines have been shown to induce a cross-reactive and protective immune response against MPXV, limited data support their efficacy against the 2022 Mpox outbreak. Furthermore, there are no specific antiviral drugs for Mpox. Host-cell lipid rafts are small, highly dynamic plasma-membrane microdomains enriched in cholesterol, glycosphingolipids and phospholipids that have emerged as crucial surface-entry platforms for several viruses. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) inhibits fungal, bacterial and viral infection of host cells through its capacity to sequester host-cell cholesterol and disrupt lipid raft architecture. In this context, we discuss the hypothesis that AmphB could inhibit MPXV infection of host cells through disruption of lipid rafts and eventually through redistribution of receptors/co-receptors mediating virus entry, thus representing an alternative or additional therapeutic tool for human Mpox.


Subject(s)
Mpox (monkeypox) , Sexual and Gender Minorities , Male , Animals , Humans , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Drug Repositioning , Homosexuality, Male , Zoonoses , Liposomes
2.
Traffic ; 24(2): 76-94, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36519961

ABSTRACT

Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical-physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.


Subject(s)
Extracellular Vesicles , Melanoma , Humans , Caveolin 1/metabolism , Autophagosomes/metabolism , Extracellular Vesicles/metabolism , Cholesterol/metabolism
4.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36146865

ABSTRACT

Several flaviviruses such as Hepatitis C virus, West Nile virus, Dengue virus and Japanese Encephalitis virus exploit the raft platform to enter host cells whereas the involvement of lipid rafts in Zika virus-host cell interaction has not yet been demonstrated. Zika virus disease is caused by a flavivirus transmitted by Aedes spp. Mosquitoes, although other mechanisms such as blood transfusion, sexual and maternal-fetal transmission have been demonstrated. Symptoms are generally mild, such as fever, rash, joint pain and conjunctivitis, but neurological complications, including Guillain-Barré syndrome, have been associated to this viral infection. During pregnancy, it can cause microcephaly and other congenital abnormalities in the fetus, as well as pregnancy complications, representing a serious health threat. In this study, we show for the first time that Zika virus employs cell membrane lipid rafts as a portal of entry into Vero cells. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) hampers a microbe-host cell interaction through the disruption of lipid raft architecture. Here, we found that Amphotericin B by the same mechanism of action inhibits both Zika virus cell entry and replication. These data encourage further studies on the off-label use of Amphotericin B in Zika virus infections as a new and alternate antiviral therapy.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Amphotericin B/metabolism , Amphotericin B/therapeutic use , Animals , Antifungal Agents/metabolism , Antifungal Agents/therapeutic use , Antiviral Agents/pharmacology , Chlorocebus aethiops , Female , Humans , Membrane Lipids/metabolism , Membrane Microdomains , Pregnancy , Vero Cells
5.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012424

ABSTRACT

Hypovitaminosis D is involved in various inflammatory, infectious and autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. Moreover, the active form of vitamin D, calcitriol, has been shown to modulate the immune response, playing an anti-inflammatory effect. However little is known about the mechanisms underlying this anti-inflammatory effect and the potential sex differences of calcitriol immune regulation. Hence, the aim of this study was to investigate whether calcitriol could act differently in modulating T cell immunity of age-matched male and female healthy donors. We analyzed the effects of calcitriol in T lymphocytes from healthy women and men on the expression levels of the vitamin D receptor (VDR) and pro- and anti-inflammatory cytokine production. We showed that a treatment with calcitriol induced a significant increase in the VDR expression levels of activated T lymphocytes from male and female healthy subjects. Moreover, we found that calcitriol significantly reduced the expression level of pro-inflammatory cytokines IL-17, INF-γ and TNF-α in the T lymphocytes of both sexes. Notably, we observed that calcitriol induced a significant increase in the expression level of anti-inflammatory cytokine IL-10 only in the T lymphocytes from female healthy donors. In conclusion, our study provides new insights regarding the sex-specific anti-inflammatory role of calcitriol in T cell immunity.


Subject(s)
Calcitriol , Sex Factors , T-Lymphocytes , Calcitriol/pharmacology , Cytokines/metabolism , Female , Humans , Male , Receptors, Calcitriol/metabolism , T-Lymphocytes/metabolism , Vitamin D/metabolism , Vitamins/metabolism
6.
Biol Sex Differ ; 12(1): 63, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34809704

ABSTRACT

BACKGROUND: Several biomarkers have been identified to predict the outcome of COVID-19 severity, but few data are available regarding sex differences in their predictive role. Aim of this study was to identify sex-specific biomarkers of severity and progression of acute respiratory distress syndrome (ARDS) in COVID-19. METHODS: Plasma levels of sex hormones (testosterone and 17ß-estradiol), sex-hormone dependent circulating molecules (ACE2 and Angiotensin1-7) and other known biomarkers for COVID-19 severity were measured in male and female COVID-19 patients at admission to hospital. The association of plasma biomarker levels with ARDS severity at admission and with the occurrence of respiratory deterioration during hospitalization was analysed in aggregated and sex disaggregated form. RESULTS: Our data show that some biomarkers could be predictive both for males and female patients and others only for one sex. Angiotensin1-7 plasma levels and neutrophil count predicted the outcome of ARDS only in females, whereas testosterone plasma levels and lymphocytes counts only in males. CONCLUSIONS: Sex is a biological variable affecting the choice of the correct biomarker that might predict worsening of COVID-19 to severe respiratory failure. The definition of sex specific biomarkers can be useful to alert patients to be safely discharged versus those who need respiratory monitoring.


Subject(s)
Biomarkers/blood , COVID-19/complications , Hospitalization , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/diagnosis , Respiratory Insufficiency/complications , Respiratory Insufficiency/diagnosis , Sex Characteristics , Adult , Angiotensin-Converting Enzyme 2/blood , Angiotensins/blood , COVID-19/blood , Estradiol/blood , Female , Humans , Male , Middle Aged , Respiratory Distress Syndrome/blood , Respiratory Insufficiency/blood , SARS-CoV-2 , Testosterone/blood
7.
Front Pharmacol ; 12: 683529, 2021.
Article in English | MEDLINE | ID: mdl-34054557

ABSTRACT

The outcome of COVID-19 appears to be influenced by vitamin D status of population. Although epidemiological data indicate that COVID-19 produces more severe symptoms and higher mortality in elderly in comparison to young patients and in men in comparison to women to date sex and age differences in vitamin D status in infected patients have not been evaluated yet. In this study we evaluated the levels of circulating 25(OH)D in patients hospitalized for COVID-19 divided accordingly to their sex and age. We also correlated 25(OH)D levels with patient's respiratory status (i.e., PaO2/FiO2 ratio) and with sex hormones plasma levels to analyze the potential relationship of these parameters. We found no significant differences in plasma levels of 25(OH)D between pre- and post-menopausal female patients and age matched male patients. Interestingly, the 25(OH)D plasma levels positively correlated to PaO2/FiO2 ratio only in young patients, regardless of their sex. We also found a significantly positive correlation between 17ß-estradiol and 25(OH)D in elderly women and between testosterone and 25(OH)D in elderly men, supporting the role of sex hormones in maintaining 25(OH)D levels. In conclusion, we suggest that a synergy between vitamin D and sex hormones could contribute to the age-related outcome of COVID-19.

9.
Eur J Immunol ; 51(3): 648-661, 2021 03.
Article in English | MEDLINE | ID: mdl-33226131

ABSTRACT

Enterobacteriaceae are a large family of Gram-negative bacteria that includes both commensals and opportunistic pathogens. The latter can cause severe nosocomial infections, with outbreaks of multi-antibiotics resistant strains, thus being a major public health threat. In this study, we report that Enterobacteriaceae-reactive memory Th cells were highly enriched in a CCR6+ CXCR3+ Th1*/17 cell subset and produced IFN-γ, IL-17A, and IL-22. This T cell subset was severely reduced in septic patients with K. pneumoniae bloodstream infection who also selectively lacked circulating K. pneumonie-reactive T cells. By combining heterologous antigenic stimulation, single cell cloning and TCR Vß sequencing, we demonstrate that a large fraction of memory Th cell clones was broadly cross-reactive to several Enterobacteriaceae species. These cross-reactive Th cell clones were expanded in vivo and a large fraction of them recognized the conserved outer membrane protein A antigen. Interestingly, Enterobacteriaceae broadly cross-reactive T cells were also prominent among in vitro primed naïve T cells. Collectively, these data point to the existence of immunodominant T cell epitopes shared among different Enterobacteriaceae species and targeted by cross-reactive T cells that are readily found in the pre-immune repertoire and are clonally expanded in the memory repertoire.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Enterobacteriaceae/immunology , Immunologic Memory/immunology , Cells, Cultured , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Interferon-gamma/immunology , Interleukin-17/immunology , Interleukins/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Interleukin-22
11.
Front Microbiol ; 11: 1821, 2020.
Article in English | MEDLINE | ID: mdl-32849425

ABSTRACT

Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that can infect animal and human hosts. The infection induces mild or sometimes severe acute respiratory diseases. Nowadays, the appearance of a new, highly pathogenic and lethal coronavirus variant, SARS-CoV-2, responsible for a pandemic (COVID-19), represents a global problem for human health. Unfortunately, only limited approaches are available to treat coronavirus infections and a vaccine against this new coronavirus variant is not yet available. The plasma membrane microdomain lipid rafts have been found by researchers to be involved in the replication cycle of numerous viruses, including coronaviruses. Indeed, some pathogen recognition receptors for coronaviruses as for other viruses cluster into lipid rafts, and it is therefore conceivable that the first contact between virus and host cells occurs into these specialized regions, representing a port of cell entry for viruses. Recent data highlighted the peculiar pro-viral or anti-viral role played by autophagy in the host immune responses to viral infections. Coronaviruses, like other viruses, were reported to be able to exploit the autophagic machinery to increase their replication or to inhibit the degradation of viral products. Agents known to disrupt lipid rafts, such as metil-ß-cyclodextrins or statins, as well as autophagy inhibitor agents, were shown to have an anti-viral role. In this review, we briefly describe the involvement of lipid rafts and autophagy in coronavirus infection and replication. We also hint how lipid rafts and autophagy may represent a potential therapeutic target to be investigated for the treatment of coronavirus infections.

14.
Front Immunol ; 9: 2302, 2018.
Article in English | MEDLINE | ID: mdl-30349537

ABSTRACT

Hepatitis B virus (HBV) and hepatitis C virus (HCV) are hepatotropic viruses that differ in their genomic content, life cycle and molecular prognosis. HBV and HCV establish chronic lifespan infections that can evolve to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). This malignant liver cancer affects more commonly male patients than females, with a male-to-female incidence ratio of 2:1 up to 7:1. Sex significantly contributes to shape the immune responses, contributing to differences in the pathogenesis of infectious diseases, in males and females patients. Females usually develop more intense innate, humoral and cellular immune responses to viral infections and to vaccination compared to male subjects. Sex hormones, in turn, differentially affect the immune responses to viruses, by specific binding to the hormone receptors expressed on the immune cells. In general, estrogens have immune-stimulating effect, while androgens are immune-suppressing. However, sex hormones, such as androgen, can also directly interact with HBV genome integrated into the cell nucleus and activate transcription of HBV oncoproteins. On the other side, estradiol and estrogen receptors protect liver cells from inflammatory damage, apoptosis and oxidative stress, which contribute to fibrosis and malignant transformation preceding HCC. In HCV-associated cirrhosis and HCC the decreased expression of estrogen receptor alfa (ERα) in male patients may explain the worse outcome of HCV infection in men than in women. The synergistic action of male and female sex hormones and of immune responses, together with viral factors contribute to the mechanism of sex/gender disparity in the outcome and progression of hepatitis viruses infection.


Subject(s)
Gonadal Steroid Hormones/physiology , Hepatitis B , Hepatitis C , Sex Characteristics , Female , Hepacivirus/genetics , Hepacivirus/immunology , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis C/immunology , Hepatitis C/virology , Humans , Male , Virus Replication
15.
Front Immunol ; 9: 1903, 2018.
Article in English | MEDLINE | ID: mdl-30174672

ABSTRACT

Estrogens, in particular 17ß-estradiol (E2), have a strong influence on the immune system and also affect pathological conditions such as autoimmune diseases. The biological effects of E2 are mediated by two intracellular receptors, i.e., estrogen receptor (ER)α and ERß, which function as ligand-activated nuclear transcription factors producing genomic effects. Immune cells express both ERα and ERß that play a complex role in modulating inflammation. Phytoestrogens display estrogen-like effects. Among them, silibinin, the major active constituent of silymarin extracted by the milk thistle (Silybum marianum), has been suggested to have an ERß selective binding. Silibinin is known to have anti-inflammatory, hepatoprotective, and anticarcinogenic effects; however, the role of silibinin in modulating human immune responses and its impact on autoimmunity remains unclear. Aim of this study was to dissect the ability of the ERß natural ligand silibinin to modulate T cell immunity, taking into account possible differences between females and males, and to define its possible role as therapeutic tool in immune-mediated diseases. To this purpose, female and age-matched male healthy subjects and patients with active rheumatoid arthritis (RA) were recruited. We evaluated the ability of silibinin to modulate ERß expression in T lymphocytes and its effects on T cell functions (i.e., apoptosis, proliferation, and cytokine production). We also analyzed whether silibinin was able to modulate the expression of microRNA-155 (miR-155), which strongly contributes to the pathogenesis of RA driving aberrant activation of the immune system. We demonstrated that silibinin upregulated ERß expression, induced apoptosis, inhibited proliferation, and reduced expression of the pro-inflammatory cytokines IL-17 and TNF-α, through ERß binding, in T lymphocytes from female and male healthy donors. We obtained similar results in T lymphocytes from patients with active RA in term of apoptosis, proliferation, and cytokine production. In addition, we found that silibinin acted as an epigenetic modifier, down-modulating the expression of miR-155. In conclusion, our data demonstrated an immunosuppressive role of silibinin, supporting its application in the treatment of autoimmune diseases as drug, but also as dietary nutritional supplement, opening new perspective in the field of autoimmune disease management.


Subject(s)
Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Estrogen Receptor beta/agonists , Immunomodulation/drug effects , Immunosuppressive Agents/pharmacology , Silybin/pharmacology , Aged , Apoptosis/drug effects , Arthritis, Rheumatoid/pathology , Cell Proliferation/drug effects , Cytokines/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Immunity , Immunosuppressive Agents/therapeutic use , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , MicroRNAs/genetics , Middle Aged , Silybin/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
16.
Cytometry A ; 91(11): 1115-1124, 2017 11.
Article in English | MEDLINE | ID: mdl-29072808

ABSTRACT

Annexin-V/propidium iodide method (A-V/PI) is a common flow cytometric method for the multiparametric analysis of cells in apoptosis. However, A-V/PI does not permit fixation and/or permeabilization of cells making impossible evaluation of intracellular markers, restricting the analysis in a narrow time frame after staining and excluding the possibility to study pathogen-infected cells. We developed a method permitting fixation and permeabilization of stained cells: Fixed Apoptotic/Necrotic (FAN) cells test. FAN relies on the same principle of A-V/PI, but uses reagents that maintain their binding and fluorescence characteristics after fixation/permeabilization: a fluorochrome-labeled anti-phosphatidylserine antibody and fluorescent amine-binding dyes. FAN was tested to discriminate apoptotic and necrotic cells using different stimuli on several cell types and results were always comparable to those obtained using A-V/PI. FAN, unlike A-V/PI, permitted to correlate cell death with intracellular and surface markers expression and to perform cytometry even two weeks after sample preparation. As fixation of stained cells inactivates infective pathogens, we used FAN in an in vitro model of Mycobacterium tuberculosis (Mtb) infection of macrophages to monitor cellular infection and cell death induction. Using a red-fluorescent Mtb, fluorochrome labeled anti-TNF-α and anti-MHC class II monoclonal antibodies, FAN permitted to establish that the extent of macrophage death correlates with intracellular Mtb content and that dying cells accumulate TNF-α and down-modulate MHC class II molecules. Results suggest that FAN may represent an additional tool to study programmed cell death particularly useful when fixation procedures are required for a safe infected sample analysis or to comparatively analyze multiple samples. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Cell Tracking/methods , Flow Cytometry/methods , Necrosis/pathology , Annexin A5/chemistry , Apoptosis/drug effects , Fixatives/chemistry , Fluorescent Dyes/chemistry , Humans , Propidium/chemistry , Staining and Labeling/methods
17.
PLoS One ; 10(11): e0142531, 2015.
Article in English | MEDLINE | ID: mdl-26562838

ABSTRACT

Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-ß-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated ß-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.


Subject(s)
Antigens, Fungal/immunology , Candida albicans/immunology , Membrane Microdomains/immunology , Monocytes/immunology , T-Lymphocytes/immunology , Amphotericin B/pharmacology , Antigens, Fungal/metabolism , Candida albicans/physiology , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , Flow Cytometry , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Membrane Microdomains/drug effects , Membrane Microdomains/microbiology , Microscopy, Confocal , Monocytes/metabolism , Monocytes/microbiology , Phagocytosis/drug effects , Phagocytosis/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/microbiology , beta-Cyclodextrins/pharmacology
18.
J Immunol ; 191(1): 274-82, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23733870

ABSTRACT

Dormancy is defined as a stable but reversible nonreplicating state of Mycobacterium tuberculosis. It is currently thought that dormant M. tuberculosis (D-Mtb) is responsible for latent tuberculosis (TB) infection. Recently, D-Mtb was also shown in sputa of patients with active TB, but the capacity of D-Mtb to stimulate specific immune responses was not investigated. We observed that purified protein derivative-specific human CD4(+) T lymphocytes recognize mycobacterial Ags more efficiently when macrophages are infected with D-Mtb instead of replicating M. tuberculosis (R-Mtb). The different Ag recognition occurs even when the two forms of mycobacteria equally infect and stimulate macrophages, which secrete the same cytokine pattern and express MHC class I and II molecules at the same levels. However, D-Mtb but not R-Mtb colocalizes with mature phagolysosome marker LAMP-1 and with vacuolar proton ATPase in macrophages. D-Mtb, unlike R-Mtb, is unable to interfere with phagosome pH and does not inhibit the proteolytic efficiency of macrophages. We show that D-Mtb downmodulates the gene Rv3875 encoding for ESAT-6, which is required by R-Mtb to block phagosome maturation together with Rv3310 gene product SapM, previously shown to be downregulated in D-Mtb. Thus, our results indicate that D-Mtb cannot escape MHC class II Ag-processing pathway because it lacks the expression of genes required to block the phagosome maturation. Data suggest that switching to dormancy not only represents a mechanism of survival in latent TB infection, but also a M. tuberculosis strategy to modulate the immune response in different stages of TB.


Subject(s)
Latent Tuberculosis/immunology , Lymphocyte Activation/immunology , Mycobacterium tuberculosis/immunology , Phagosomes , T-Lymphocyte Subsets/immunology , Dendritic Cells/immunology , Humans , Immune Evasion , Latent Tuberculosis/microbiology , Latent Tuberculosis/pathology , Macrophages/immunology , Monocytes/immunology , Mycobacterium tuberculosis/growth & development , Phagosomes/immunology , Phagosomes/microbiology , T-Lymphocyte Subsets/microbiology , T-Lymphocyte Subsets/pathology
19.
Hum Immunol ; 74(6): 722-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23459076

ABSTRACT

The host immune response can limit Mycobacterium tuberculosis (Mtb) spreading in primary tuberculosis (TB) without eradicating all bacilli, which can persist causing latent TB infection and are responsible for reactivation TB. Persistent Mtb is confined to granulomas within phagocytes, but it is also found in other non-immune cells. We focused on fibroblasts since these cells participate to the granuloma formation and were shown to be infected in latent TB infections. We show that in vitro both Mtb and Bacille Calmette-Guérin actively replicate in human fibroblasts. Mycobacterial infection of fibroblasts causes a significant inhibition of interferon (IFN)-γ induced membrane expression of major histocompatibility complex class II molecules in these cells. The functional consequence of in vitro infection is a significant reduction of the fibroblast capacity to present peptides and soluble proteins to autologous specific CD4(+) T cell clones. Moreover, fibroblasts are capable of presenting antigen derived from the processing of heat-killed Mtb, but not from viable Mtb. Data indicate that IFN-γ treated fibroblasts are capable of presenting antigens derived from the processing of whole bacteria in addition to the capacity to present peptides and isolated proteins. Interestingly, Mtb infected fibroblasts lose this capacity, suggesting that Mtb may evade T helper immune surveillance by infecting fibroblasts.


Subject(s)
Fibroblasts/immunology , Fibroblasts/microbiology , Mycobacterium tuberculosis/immunology , T-Lymphocytes, Helper-Inducer/immunology , Antigen Presentation/immunology , Cell Line , Cell Membrane/metabolism , Cell Proliferation , Fibroblasts/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Interferon-gamma/metabolism , Mycobacterium tuberculosis/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
20.
Prostaglandins Other Lipid Mediat ; 99(1-2): 24-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22542425

ABSTRACT

PGE2 is a potent modulator of the T helper (Th)17 immune response that plays a critical role in the host defense against bacterial, fungal and viral infections. We recently showed high serum levels of interleukin (IL)-17 in patients with gonococcal infection and we hypothesized that Neisseria gonorrhoeae could exploit a PGE2 mediated mechanism to promote IL-17 production. Here we show that N. gonorrhoeae induces human dendritic cell (DC) maturation, secretion of prostaglandin E2 and proinflammatory cytokines, including the pro-Th17 cytokine IL-23. Blocking PGE2 endogenous synthesis selectively reduces IL-23 production by DC in response to gonococcal stimulation, confirming recent data on PGE2/IL-23 crosstalk. N. gonorrhoeae stimulated DC induce a robust IL-17 production by memory CD4(+) T cells and this function correlates with PGE2 production. Our findings delineate a previously unknown role for PGE2 in the immune response to N. gonorrhoeae, suggesting its contribute via Th17 cell expansion.


Subject(s)
Dendritic Cells/metabolism , Dinoprostone/biosynthesis , Interleukin-23/metabolism , Neisseria gonorrhoeae/physiology , T-Lymphocytes, Helper-Inducer/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dinoprostone/metabolism , Gonorrhea/metabolism , Humans , Immunologic Memory , Interleukin-17/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...