Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmacol Res ; 64(5): 482-92, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21689754

ABSTRACT

Inhibitors of angiotensin converting enzymes (ACE) are clinically used to control cardiomyopathy in patients of Duchenne muscular dystrophy. Various evidences suggest potential usefulness of long-term treatment with ACE inhibitors to reduce advanced fibrosis of dystrophic muscle in the mdx mouse model. However, angiotensin II is known to exert pro-inflammatory and pro-oxidative actions that might contribute to early events of dystrophic muscle degeneration. The present study has been aimed at evaluating the effects of an early treatment with enalapril on the pathology signs of exercised mdx mouse model. The effects of 1 and 5 mg/kg enalapril i.p. for 4-8 weeks have been compared with those of 1 mg/kg α-methyl-prednisolone (PDN), as positive control. Enalapril caused a dose-dependent increase in fore limb strength, the highest dose leading to a recovery score similar to that observed with PDN. A dose-dependent reduction of superoxide anion production was observed by dihydroethidium staining in tibialis anterior muscle of enalapril-treated mice, approaching the effect observed with PND. In parallel, a significant reduction of the activated form of the pro-inflammatory Nuclear Factor-kB has been observed in gastrocnemious muscle. Histologically, 5 mg/kg enalapril reduced the area of muscle necrosis in both gastrocnemious muscle and diaphragm, without significant effect on non-muscle area. In parallel no significant changes have been observed in both muscle TGF-ß1 and myonuclei positive to phosphorylated Smad2/3. Myofiber functional indices were also monitored by microelectrodes recordings. A dose-dependent recovery of macroscopic chloride conductance has been observed upon enalapril treatment in EDL muscle, with minor effects being exerted in diaphragm. However a modest effect, if any, was found on mechanical threshold, a functional index of calcium homeostasis. No recovery was observed in creatine kinase and lactate dehydrogenase. Finally the results suggest the ability of enalapril to blunt angiotensin-II dependent activation of pro-inflammatory and pro-oxidant pathways which may be earlier events with respect to the pro-fibrotic ones, and may in part account for both functional impairment and muscle necrosis. The PDN-like profile may corroborate the combined use of the two classes of drugs in DMD patients so to potentiate the beneficial effects at skeletal muscle level, while reducing both spontaneous and PDN-aggravated cardiomyopathy.


Subject(s)
Angiotensin II/immunology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Enalapril/therapeutic use , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Oxidative Stress , Angiotensin-Converting Enzyme Inhibitors/immunology , Animals , Enalapril/immunology , Humans , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology
2.
Am J Physiol Endocrinol Metab ; 297(3): E685-94, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19531637

ABSTRACT

Oxidative stress contributes to cardiovascular complications of diabetes, in part, by reducing the bioavailability of nitric oxide (NO). We investigated the mechanisms whereby the insulin sensitizer rosiglitazone may ameliorate oxidative stress in the vasculature of spontaneously hypertensive rats (SHR). Nine-week-old SHR were treated by gavage for 7 wk with rosiglitazone (5 mg x kg(-1) x day(-1)) or vehicle control. Treatment of SHR with rosiglitazone lowered systolic blood pressure, reduced fasting plasma insulin and asymmetrical dimethylarginine, and increased insulin sensitivity (when compared with vehicle treatment). In vessel homogenates and serum from rosiglitazone-treated SHR, SOD activity was enhanced, while 8-iso-PGF(2alpha) (lipid peroxidation product) was reduced (when compared with samples from vehicle-treated SHR). Moreover, expression of p22phox (catalytic subunit of NADPH oxidase) as well as nitrotyrosine and superoxide content were all reduced in the aortas of rosiglitazone-treated SHR. In mesenteric vascular beds (MVB) isolated ex vivo from rosiglitazone-treated SHR, NO-dependent vasodilator actions of insulin were improved when compared with MVB from vehicle-treated SHR. Acute pretreatment of MVB from vehicle-treated SHR with apocynin (NADPH oxidase inhibitor) enhanced vasodilator actions of insulin (results comparable to those in MVB from rosiglitazone-treated SHR). In Langendorff heart preparations from rosiglitazone-treated SHR, ischemia/reperfusion injury caused infarcts 40% smaller than in hearts from vehicle-treated SHR. Acute pretreatment of hearts from vehicle-treated SHR with apocynin produced similar results. Finally, rosiglitazone treatment of endothelial cells in primary culture reduced superoxide induced by insulin-resistant conditions. We conclude that rosiglitazone therapy in SHR increases SOD activity and decreases p22phox expression in the vasculature to reduce oxidant stress leading to an improved cardiovascular phenotype.


Subject(s)
Blood Vessels/drug effects , Cardiovascular System/drug effects , Hypertension/drug therapy , Oxidative Stress/drug effects , Thiazolidinediones/therapeutic use , Animals , Antioxidants/therapeutic use , Blood Vessels/metabolism , Blood Vessels/physiopathology , Cardiovascular System/physiopathology , Cattle , Cells, Cultured , Drug Evaluation, Preclinical , Hypertension/blood , Hypertension/metabolism , Hypertension/physiopathology , Male , NADPH Oxidases/blood , NADPH Oxidases/metabolism , Phenotype , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Rosiglitazone , Superoxide Dismutase/metabolism
3.
Curr Med Chem ; 16(1): 94-112, 2009.
Article in English | MEDLINE | ID: mdl-19149564

ABSTRACT

Micro- and macrovascular complications are major causes of disability and death in patients with diabetes mellitus. Functional impairment of endothelial activity precedes the development of morphological alterations during the progression of diabetes. This endothelial dysfunction results from reduced bioavailability of the vasodilator nitric oxide (NO), mainly due to accelerated NO degradation by reactive oxygen species (ROS). Although hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia independently contribute to endothelial dysfunction via several distinct mechanisms, increased oxidative stress seems to be the first alteration triggering several others. Mechanisms proposed to explain glucose- and lipid-induced vascular alterations in diabetes include accelerated formation of advanced glycation end-products (AGEs), protein kinase C activation, inflammatory signaling and oxidative stress. Insulin resistance with impaired PI 3-kinase effects decreases insulin mediated production of NO and reduces vasodilation, capillary recruitment and antioxidant properties of endothelium. Compensatory hyperinsulinemia enhances activation of intact MAP-kinase pathways and contributes to pro-atherogenic events by increasing secretion of endothelin-1 (ET-1), stimulating expression of adhesion molecules such as VCAM-1 and E-selectin, and inducing production of ROS. Conventional therapies to reduce hyperglycemia, dyslipidemia and insulin resistance may effectively improve endothelial function and delay the onset of vascular complications. Novel therapeutic approaches designed to inhibit AGEs formation, reduce PKC activation, decrease inflammatory signals and restore the ox/redox balance of endothelium may be predicted to ameliorate vascular function in diabetic state. This review summarizes the current knowledge on the most important mechanisms involved in endothelial dysfunction during diabetes. In addition, novel therapeutic strategies that may result from recently identified targets are also described.


Subject(s)
Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/pathology , Endothelium, Vascular/pathology , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypolipidemic Agents/therapeutic use , Insulin/pharmacology , Insulin/physiology , Insulin/therapeutic use
4.
Biochim Biophys Acta ; 1708(1): 50-62, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15949983

ABSTRACT

Although it is recognized that ATP plays a part in apoptosis, whether and how its level changes en route to apoptosis as well as how ATP is synthesized has not been fully investigated. We have addressed these questions using cultured cerebellar granule cells. In particular, we measured the content of ATP, ADP, AMP, IMP, inosine, adenosine and L-lactate in cells undergoing apoptosis during the commitment phase (0-8 h) in the absence or presence of oligomycin or/and of citrate, which can inhibit totally the mitochondrial oxidative phosphorylation and largely the substrate-level phosphorylation in glycolysis, respectively. In the absence of inhibitors, apoptosis was accompanied by an increase in ATP and a decrease in ADP with 1:1 stoichiometry, with maximum ATP level found at 3 h apoptosis, but with no change in levels of AMP and its breakdown products and with a relatively low level of L-lactate production. Consistently, there was an increase in the cell energy charge and in the ratio ([ATP][AMP])/[ADP](2). When the oxidative phosphorylation was completely blocked by oligomycin, a decrease of the ATP content was found both in control cells and in cells undergoing apoptosis, but nonetheless cells still died by apoptosis, as shown by checking DNA laddering and by death prevention due to actinomycin D. In this case, ATP was provided by anaerobic glycolysis, as suggested by the large increase of L-lactate production. On the other hand, citrate itself caused a small decrease in ATP level together with a huge decrease in L-lactate production, but it had no effect on cell survival. When ATP level was further decreased due to the presence of both oligomycin and citrate, death occurred via necrosis at 8 h, as shown by the lack of DNA laddering and by death prevention found due to the NMDA receptor antagonist MK801. However, at a longer time, when ATP level was further decreased, cells died neither via apoptosis nor via glutamate-dependent necrosis, in a manner similar to something like to energy catastrophe. Our results shows that cellular ATP content increases in cerebellar granule cell apoptosis, that the role of oxidative phosphorylation is facultative, i.e. ATP can also derive from anaerobic glycolysis, and that the type of cell death depends on the ATP availability.


Subject(s)
Adenosine Triphosphate/metabolism , Apoptosis/physiology , Cerebellum/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenylate Kinase/metabolism , Anaerobiosis , Animals , Cerebellum/cytology , Cerebellum/drug effects , Citric Acid/pharmacology , DNA Fragmentation , Glycolysis , Lactic Acid/biosynthesis , Oligomycins/pharmacology , Oxidative Phosphorylation , Rats , Rats, Wistar
5.
Brain Res Brain Res Protoc ; 10(3): 168-74, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12565687

ABSTRACT

The method described here allows the quantitative simultaneous determination of adenosine 5'-triphosphate, adenosine 5'-diphosphate, adenosine 5'-monophosphate, adenosine, guanosine 5'-triphosphate, guanosine 5'-diphosphate, guanosine, inosine 5'-monophosphate, inosine, uric acid, xanthine, hypoxanthine and beta-nicotinamide adenine dinucleotide by ion-pair high performance liquid chromatography. The chromatographic analysis requires 26 min per sample and allows the separation of the mentioned metabolites in a time as short as 16 min. Primary cultures of rat cerebellar granule cells were incubated in serum-free medium containing 25 mM KCl for 1.5-48 h and their acid extracts were injected onto column. Uric acid, inosine 5'-monophosphate, inosine, beta-nicotinamide adenine dinucleotide, adenosine, adenosine 5'-monophosphate, guanosine 5'-diphosphate, adenosine 5'-diphosphate, guanosine 5'-triphosphate and adenosine 5'-triphosphate were identified and quantified, while hypoxanthine, xanthine and guanosine were below the detection limit. This method makes use of a single-step sample pre-treatment procedure which allows a greater than 91% recovery of the compounds of interest and provides the assay of the metabolites of interest in little amounts of cell extracts. Therefore, this method is suitable to evaluate the energetic state in a variety of cell types, both under normal and dismetabolic conditions, such as after the induction of apoptosis or necrosis.


Subject(s)
Cerebellum/chemistry , Cerebellum/metabolism , NAD/analysis , Purine Nucleotides/analysis , Purine Nucleotides/metabolism , Animals , Cells, Cultured , Cerebellum/cytology , Chromatography, High Pressure Liquid , Culture Media , Cytoplasmic Granules/metabolism , Diffusion Chambers, Culture , Indicators and Reagents , Linear Models , Male , NAD/metabolism , Rats , Rats, Wistar , Reference Standards , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL