Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(11): 108319, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026171

ABSTRACT

White-tailed deer (WTD) are susceptible to SARS-CoV-2 and represent an important species for surveillance. Samples from WTD (n = 258) collected in November 2021 from Québec, Canada were analyzed for SARS-CoV-2 RNA. We employed viral genomics and host transcriptomics to further characterize infection and investigate host response. We detected Delta SARS-CoV-2 (B.1.617.2) in WTD from the Estrie region; sequences clustered with human sequences from October 2021 from Vermont, USA, which borders this region. Mutations in the S-gene and a deletion in ORF8 were detected. Host expression patterns in SARS-CoV-2 infected WTD were associated with the innate immune response, including signaling pathways related to anti-viral, pro- and anti-inflammatory signaling, and host damage. We found limited correlation between genes associated with innate immune response from human and WTD nasal samples, suggesting differences in responses to SARS-CoV-2 infection. Our findings provide preliminary insights into host response to SARS-CoV-2 infection in naturally infected WTD.

4.
Nat Microbiol ; 7(12): 2011-2024, 2022 12.
Article in English | MEDLINE | ID: mdl-36357713

ABSTRACT

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Subject(s)
COVID-19 , Deer , Animals , Humans , SARS-CoV-2/genetics
5.
Can Commun Dis Rep ; 48(6): 243-251, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-37333575

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic, is capable of infecting a variety of wildlife species. Wildlife living in close contact with humans are at an increased risk of SARS-CoV-2 exposure and, if infected, have the potential to become a reservoir for the pathogen, making control and management more difficult. The objective of this study is to conduct SARS-CoV-2 surveillance in urban wildlife from Ontario and Québec, increasing our knowledge of the epidemiology of the virus and our chances of detecting spillover from humans into wildlife. Methods: Using a One Health approach, we leveraged activities of existing research, surveillance and rehabilitation programs among multiple agencies to collect samples from 776 animals from 17 different wildlife species between June 2020 and May 2021. Samples from all animals were tested for the presence of SARS-CoV-2 viral ribonucleic acid, and a subset of samples from 219 animals across three species (raccoons, Procyon lotor; striped skunks, Mephitis mephitis; and mink, Neovison vison) were also tested for the presence of neutralizing antibodies. Results: No evidence of SARS-CoV-2 viral ribonucleic acid or neutralizing antibodies was detected in any of the tested samples. Conclusion: Although we were unable to identify positive SARS-CoV-2 cases in wildlife, continued research and surveillance activities are critical to better understand the rapidly changing landscape of susceptible animal species. Collaboration between academic, public and animal health sectors should include experts from relevant fields to build coordinated surveillance and response capacity.

6.
Animals (Basel) ; 10(2)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059390

ABSTRACT

Chronic wasting disease (CWD), a degenerative and fatal prion disease affecting cervids, was detected for the first time in the province of Québec, Canada, in a red deer (Cervus elaphus) farm in the Laurentides region on 10 September 2018. To assess CWD prevalence and control the disease in the free-ranging white-tailed deer (Odocoileus virginianus) population, a response plan including enhanced surveillance, population control, regulatory measures, and public outreach was deployed by the Ministry of Forests, Wildlife, and Parks (MFFP). In the 401 km2 white-tailed deer control area, a total of 750 free-ranging white-tailed deer were culled over 70 days, from 22 September to 15 December 2018. Of the culled deer, 534 were tested for CWD. We also tested for CWD a total of 447 white-tailed deer hunted from the enhanced surveillance zone and 2584 free-ranging white-tailed deer harvested outside this zone. Regulations were applied to prevent the spread of the disease through movements of infected animals harvested by hunters. Although no case of CWD was detected in free-ranging cervids in Québec in 2018, this does not confirm the absence of the disease in these populations. However, the results suggest that if CWD is present, few free-ranging cervids are infected, making it possible to prevent its establishment in the province of Québec.

SELECTION OF CITATIONS
SEARCH DETAIL
...