Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Ecol ; 39(10): 1263-72, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24091710

ABSTRACT

The promethea moth Callosamia promethea is one of three species of silkmoths from the genus Callosamia that occur in North America. Cross attraction of males to heterospecific calling females has been observed in the field, and hybrid progeny have been produced by pairing heterospecifics in captivity. These observations suggest that all three species share or have considerable overlap in the sex attractant pheromones produced by females, so that other prezygotic isolating mechanisms, such as diel differences in reproductive activity, limit hybridization in the field. Coupled gas chromatography-electroantennogram detection and gas chromatography- mass-spectrometry analyses of extracts of volatiles collected from female promethea moths supported the identification of (4E,6E,11Z,13Z)-hexadeca-4,6,11,13-tetraenal [(4E,6E,11Z,13Z)-16:Ald] as the compound in extracts that elicited the largest responses from antennae of males. The identification was confirmed by non-selective synthesis of several isomers as analytical standards, and stereoselective synthesis of (4E,6E,11Z,13Z)-16:Ald for testing in field trials. Male moths were strongly attracted to synthetic (4E,6E,11Z,13Z)-16:Ald, suggesting that this compound is the major and possibly the only component of the sex pheromone of these large saturniid moths. Based on the cross-attraction of heterospecifics, it is likely that this is also a major pheromone component of the other two North American Callosamia species as well.


Subject(s)
Aldehydes/analysis , Aldehydes/pharmacology , Moths/chemistry , Moths/drug effects , Naphthacenes/analysis , Naphthacenes/pharmacology , Sex Attractants/analysis , Sex Attractants/pharmacology , Aldehydes/isolation & purification , Animals , Behavior, Animal/drug effects , Female , Male , Naphthacenes/isolation & purification , Sex Attractants/isolation & purification , Solid Phase Microextraction
2.
Pest Manag Sci ; 69(11): 1280-90, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23554261

ABSTRACT

BACKGROUND: Pheromone antagonists are good disruptants of the pheromone communication in insects and, as such, have been used in mating disruption experiments. In this study, new non-fluorinated electrophilic keto derivatives structurally related to the pheromone of Cydia pomonella (codlemone) have been synthesised and tested as putative pheromone antagonists. RESULTS: Codlemone (1) was prepared in excellent stereoselectivity in a new, iterative approach involving two Horner-Wadsworth-Emmons reactions. Methyl ketone (2), keto ester (3) and diketone (4) were obtained from codlemone in straightforward approaches in good overall yields and excellent stereochemical purity (≥98% E,E). In electrophysiology, only compound 2 displayed inhibition of the antennal response to the pheromone after presaturation of the antennal receptors. Compounds 2 to 4 did not inhibit the pheromone-degrading enzyme responsible for codlemone metabolism, but mixtures of ketone 2 and diketone 4 with codlemone elicited erratic flights on males in a wind tunnel. In the field, blends of either compound (2 or 4) with the pheromone caught significantly fewer males than codlemone alone. CONCLUSION: Codlemone and the potential antagonists 2 to 4 have been synthesised in good yields and excellent stereoselectivity. These chemicals behave as pheromone antagonists of the codling moth both in the laboratory and in the field.


Subject(s)
Dodecanol/analogs & derivatives , Moths/drug effects , Moths/physiology , Sex Attractants/pharmacology , Animals , Dodecanol/antagonists & inhibitors , Dodecanol/chemical synthesis , Dodecanol/chemistry , Dodecanol/pharmacology , Female , Male , Sex Attractants/antagonists & inhibitors , Sex Attractants/chemical synthesis , Sex Attractants/chemistry
3.
J Insect Sci ; 13: 134, 2013.
Article in English | MEDLINE | ID: mdl-24766416

ABSTRACT

Trifluoromethyl ketones reversibly inhibit pheromone-degrading esterases in insect olfactory tissues, affecting pheromone detection and behavior of moth males. In this work, (Z)-9-tetradecenyl trifluoromethyl ketone (Z9-14:TFMK), a closely-related analogue of the pheromone of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), was prepared and tested in electroantennogram and field tests as possible inhibitors of the pheromone action. The electroantennogram parameters, amplitude, and the repolarization time of the antennal responses of S. frugiperda males were affected by Z9-14:TFMK vapors. Exposure of male antennae to a stream of air passing through 100 µg of the ketone produced a significant reduction of the amplitude and an increase of 2/3 repolarization time signals to the pheromone. The effect was reversible and dose-dependent. In the field, the analogue significantly decreased the number of males caught when mixed with the pheromone in 10:1 ratio. The results suggest that Z9-14:TFMK is a mating disruptant of S. frugiperda and may be a good candidate to consider in future strategies to control this pest.


Subject(s)
Chemotaxis/drug effects , Ketones/pharmacology , Pheromones/pharmacology , Sex Attractants/pharmacology , Spodoptera/drug effects , Animals , Arthropod Antennae/drug effects , Arthropod Antennae/physiology , Electrophysiological Phenomena , Male , Mexico , Pheromones/chemical synthesis , Sex Attractants/chemical synthesis , Spodoptera/physiology
4.
J Agric Food Chem ; 57(18): 8514-9, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19702270

ABSTRACT

A new pheromone antagonist of the codling moth Cydia pomonella is reported. Presaturation of the antennae of the insects with vapors of the antagonist (E,E)-8,10-dodecadienyl trifluoromethyl ketone, analogue of the main component of the pheromone (codlemone), resulted in lower electrophysiological responses to the pheromone relative to untreated insects. In the wind tunnel, the compound elicited a remarkable disruptive effect on all types of behavior of males flying toward a source baited with a pheromone/antagonist blend in 1:1, 1:5, and 1:10 ratios. The insects displayed erratic flights in the presence of the antagonist, as shown by their flight parameters in comparison to insects attracted to the pheromone alone. In the field, traps baited with mixtures of 1:10 codlemone/antagonist attracted considerably lower numbers of males than the natural attractant. The antagonist, however, did not inhibit the pheromone-degrading enzymes present in male antennae, suggesting that trifluoromethyl ketones are not sufficiently electrophilic to produce a stable intermediate adduct with a cysteine residue of the enzyme, a mechanism previously proposed for oxidase inhibition in insects. Overall and taking into account our previous reports and, particularly, the reduction in damage induced in maize fields by a trifluoromethyl ketone analogue of the pheromone of Sesamia nonagrioides (Sole, J.; Sans, A.; Riba, M.; Rosa, E.; Bosch, M. P.; Barrot, M.; Palencia, J.; Castella, J.; Guerrero, A. Reduction of damage by the Mediterranean corn borer, Sesamia nonagrioides , and the European corn borer, Ostrinia nubilalis , in maize fields by a trifluoromethyl ketone pheromone analog . Entomol. Exp. Appl. 2008, 126, 28-39), the antagonist might be a new candidate to consider in future strategies to control the codling moth.


Subject(s)
Ketones/pharmacology , Moths/chemistry , Pheromones/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Dodecanol/analogs & derivatives , Dodecanol/chemistry , Enzyme Inhibitors/pharmacology , Insect Control/methods , Male , Moths/enzymology , Pheromones/metabolism , Pheromones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...