Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 84(7): 075106, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23902105

ABSTRACT

We present a table top setup for time- and angle-resolved photoelectron spectroscopy to investigate band structure dynamics of correlated materials driven far from equilibrium by femtosecond laser pulse excitation. With the electron-phonon equilibration time being in the order of 1-2 ps it is necessary to achieve sub-picosecond time resolution. Few techniques provide both the necessary time and energy resolution to map non-equilibrium states of the band structure. Laser-driven high-order harmonic generation is such a technique. In our experiment, a grating monochromator delivers tunable photon energies up to 40 eV. A photon energy bandwidth of 150 meV and a pulse duration of 100 fs FWHM allow us to cover the k-space necessary to map valence bands at different kz and detect outer core states.

2.
Phys Rev Lett ; 100(10): 107202, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18352227

ABSTRACT

The magnetic linear dichroism of the gadolinium 4f core level is studied in a time-resolved photoemission experiment employing laser pump- and synchrotron-radiation probe pulses. Upon optical excitation of the 5d6s valence electrons with femtosecond laser pulses, the magnetic order in the 4f spin system is reduced. Remarkably, the linear dichroism remains at 80% of the equilibrium contrast while the lattice temperature reaches the Curie temperature due to electron-phonon scattering. Contrasting itinerant ferromagnets, this shows that equilibration between the lattice and spin subsystems takes in Gd about 80 ps and is established in parallel with heat diffusion.

3.
J Chem Phys ; 122(23): 234710, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-16008476

ABSTRACT

Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.

4.
Phys Rev Lett ; 89(10): 107402, 2002 Sep 02.
Article in English | MEDLINE | ID: mdl-12225225

ABSTRACT

The femtosecond dynamics of localization and solvation of photoinjected electrons in ultrathin layers of amorphous solid H2O and D2O have been studied by time- and angle-resolved two-photon-photoelectron spectroscopy. After electron transfer from the metal substrate into the conduction band of ice, the excess electron localizes within the first 100 fs in a state at 2.9 eV above E(F), which is further stabilized by 300 meV on a time scale of 0.5-1 ps due to molecular rearrangements in the adlayer. A pronounced change of the solvation dynamics at a coverage of approximately 2 bilayers is attributed to different rigidity of the solvation shell in the bulk and near the surface of ice.

5.
Phys Rev Lett ; 87(26): 267402, 2001 Dec 24.
Article in English | MEDLINE | ID: mdl-11800855

ABSTRACT

Femtosecond time-resolved photoemission of photoexcited electrons in highly oriented pyrolytic graphite (HOPG) provides strong evidence for anisotropies of quasiparticle (QP) lifetimes. Indicative of such anisotropies is a pronounced anomaly in the energy dependence of QP lifetimes between 1.1 and 1.5 eV--the vicinity of a saddle point in the graphite band structure. This is supported by recent ab initio calculations and a comparison with experiments on defect-enriched HOPG which reveal that disorder, e.g., defects or phonons, increases electron energy relaxation rates.

6.
Faraday Discuss ; (117): 191-202, 2000.
Article in English | MEDLINE | ID: mdl-11271991

ABSTRACT

Excited state electron transfer at the adsorbate/metal interface represents a key step in molecular electronic devices. The dynamics of such processes are governed by ultrafast energy relaxation which can be probed directly by time-resolved two-photon photoemission (2PPE). Using 2PPE spectroscopy we investigate the energetics and lifetimes of the unoccupied electronic states of C6F6 adsorbed on Cu(111) as a model system for electron transfer at organic/metal interfaces. With increasing C6F6 layer thickness we find a pronounced decrease in the energetic position of the lowest unoccupied state, which is accompanied by a strong increase in its lifetime as well as a decrease in the effective electron mass. The frequently employed dielectric continuum model which describes delocalized (quantum well) states within adsorbate layers does not give a consistent explanation of these findings. By adsorption of Xe overlayers onto C6F6/Cu(111) we can show that, even for one monolayer of C6F6, the excited state must be localized predominantly inside the C6F6 layer and thus originates from a molecular state (presumably an antibonding sigma* orbital). With increasing coverage this state becomes more delocalized within the adsorbate layer, which reduces the coupling to the metal substrate and thus enhances the excited state lifetime.

SELECTION OF CITATIONS
SEARCH DETAIL
...