Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(83): 12475-12478, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37782483

ABSTRACT

The highly selective hydrogenation of CO2 to methanol has been achieved through the simultaneous utilization of alkali metals and Co as promoters over Cu-Zn@CN catalysts derived from MOF. Rb facilitates the dissociation of CO2 in the aqueous phase at relatively mild conditions to yield methanol with a selectivity of 89%.

2.
ACS Appl Mater Interfaces ; 14(34): 38905-38920, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35973160

ABSTRACT

Designing new materials for selective Fischer-Tropsch synthesis (FTS) is an elegant way to enhance local feedstock utilization like biomass and waste. In this approach, we have designed a thermally and chemically stable bimetallic PtCo/NC hybrid nanocomposite catalyst derived from a zeolitic imidazolate framework (ZIF-67, which contains cobalt as a metal center) through carbonization for low-temperature (413-473 K) aqueous-phase Fischer-Tropsch synthesis (AFTS). The selectivity of the desired range of hydrocarbons is adjusted using a highly dispersed PtCo bimetallic alloy, which facilitates extraordinary reduction of a metal oxide to active species by the synergic effect under the AFTS reaction conditions. The ZIF-derived catalyst tested in this study exhibited the highest activity to date for very low temperatures (433 K) in aqueous-phase Fischer-Tropsch synthesis with CO conversion rates between 0.61 and 1.20 molCO·molCo-1·h-1. Insights of the remarkable catalyst activity were examined by in situ X-ray photoelectron spectroscopy (XPS) studies corroborated by density functional theory (DFT) calculation. The bimetallic Co3Pt (111) surface was found to be highly active for the C-C coupling reaction between surface-adsorbed C and CO, forming a CCO intermediate with a very low activation barrier (Ea = 0.37 eV), in comparison to the C-C coupling activation barrier obtained over the Co (111) surface (Ea = 0.87 eV). This unique approach and observations create a new path for developing next-generation advanced catalyst systems and processes for selective low-temperature FTS.

3.
Mol Divers ; 24(4): 1107-1124, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31760561

ABSTRACT

This study examines the interaction of 137 antimalarial and antihuman African trypanosomiasis compounds [bis(2-aminoimidazolines), bisguanidinediphenyls and polyamines] on three different in vitro assays (Trypanosoma brucei rhodesiense (T.b.r.), Plasmodium falciparum (P.f.) and cytotoxicity-L6 cells). ΔTm values, wherever available, were also examined for the considered ligands. Eight DNA-ligand complexes and one DNA structure without ligand were selected from protein data bank (PDB) based on the structural similarity. Geometry optimization of all the considered ligands was carried out at the B3LYP/6-31G(d) level of theory. The AutoDock4 tool was utilized for the docking of these molecules at the minor groove of nine selected DNA crystal structures. We observed DT20, DA6, DT8 and DT19 residues generally interact with most of the considered ligands. Molecular dynamics simulations, molecular mechanics-generalized born surface area and molecular mechanics-Poisson Boltzmann surface area calculations indicate that the docked poses are generally stable and docked ligands do not show much deviation in the minor groove of DNA until 10 ns simulation. Efficient and statistically significant quantitative structure-activity relationship models for T.b.r., P.f., C-L6 and ΔTm values were developed. All the generated models are internally and externally validated. We predicted a few ligands with significant IC50 values against P.f. based on the developed models. These results may help to design new and potent antimalarial and antihuman African trypanosomal compounds.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Ligands , Molecular Docking Simulation , Plasmodium falciparum/drug effects , Quantitative Structure-Activity Relationship
4.
J Org Chem ; 84(23): 15389-15398, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31702155

ABSTRACT

Herein, we report commercially available carbon-supported-palladium (Pd/C)-catalyzed N-methylation of nitroarenes and amines using MeOH as both a C1 and a H2 source. This transformation proceeds with high atom-economy and in an environmentally friendly way via borrowing hydrogen mechanism. A total of >30 structurally diverse N-methylamines, including bioactive compounds, were selectively synthesized with isolated yields of up to 95%. Furthermore, selective N-methylation and deuteration of nimesulide, a nonsteroidal anti-inflammatory drug, were realized through the late-stage functionalization.


Subject(s)
Amines/chemistry , Carbon/chemistry , Methanol/chemistry , Nitro Compounds/chemistry , Palladium/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Catalysis , Drug Discovery , Methylation , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...