Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36673923

ABSTRACT

The implementation of carbon peaking and carbon neutrality is an essential measure to reduce greenhouse gas emissions and actively respond to climate change. The net carbon sink efficiency (NCSE), as an effective tool to measure the carbon budget capacity, is important in guiding the carbon emission reduction among cities and the maintenance of sustainable economic development. In this paper, NCSE values are used as a measure of the carbon budget capacity to measure the spatiotemporal evolution of the carbon neutral capacity of three major urban agglomerations (UAs) in China during 2007-2019. The clustering characteristics of the NCSE of these three major UAs, and various influencing factors such as carbon emissions, are analyzed using a spatiotemporal cube model and spatial and temporal series clustering. The results reveal the following. (1) From the overall perspective, the carbon emissions of the three major UAs mostly exhibited a fluctuating increasing trend and a general deficit during the study period. Moreover, the carbon sequestration showed a slightly decreasing trend, but not much fluctuation in general. (2) From the perspective of UAs, the cities in the Beijing-Tianjin-Hebei UA are dominated by low-low clustering in space and time; this clustering pattern is mainly concentrated in Beijing, Xingtai, Handan, and Langfang. The NCSE values in the Yangtze River Delta UA centered on Shanghai, Nanjing, and the surrounding cities exhibited high-high clustering in 2019, while Changzhou, Ningbo, and the surrounding cities exhibited low-high clustering. The NCSE values of the remaining cities in the Pearl River Delta UA, namely Guangzhou, Shenzhen, and Zhuhai, exhibited multi-cluster patterns that were not spatially and temporally significant, and the spatiotemporal clusters were found to be scattered. (3) In terms of the influencing factors, the NCSE of the Beijing-Tianjin-Hebei UA was found to be significantly influenced by the industrial structure and GDP per capita, that of the Yangtze River Delta UA was found to be significantly influenced by the industrial structure, and that of the Pearl River Delta UA was found to be significantly influenced by the population density and technology level. These findings can provide a reference and suggestions for the governments of different UAs to formulate differentiated carbon-neutral policies.


Subject(s)
Carbon Sequestration , Economic Development , Cities , China , Beijing , Rivers , Carbon/analysis
2.
Sci Data ; 9(1): 742, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460689

ABSTRACT

The growth of the manufacturing industry is the engine of rapid economic growth in developing regions. Characterizing the geographical distribution of manufacturing firms is critically important for scientists and policymakers. However, data on the manufacturing industry used in previous studies either have a low spatial resolution (or fuzzy classification) or high-resolution information is lacking. Here, we propose a map point-of-interest classification method based on machine learning technology and build a dataset of the distribution of Chinese manufacturing firms called the Gridded Manufacturing Dataset. This dataset includes the number and type of manufacturing firms at a 0.01° latitude by 0.01° longitude scale. It includes all manufacturing firms (classified into seven categories) in China in 2015 (4.56 million) and 2019 (6.19 million). This dataset can be used to characterize temporal and spatial patterns in the distribution of manufacturing firms as well as reveal the mechanisms underlying the development of the manufacturing industry and changes in regional economic policies.

3.
Front Public Health ; 10: 1094036, 2022.
Article in English | MEDLINE | ID: mdl-36684987

ABSTRACT

Introduction: Humans spend most of their time in settlements, and the built environment of settlements may affect the residents' sentiments. Research in this field is interdisciplinary, integrating urban planning and public health. However, it has been limited by the difficulty of quantifying subjective sentiments and the small sample size. Methods: This study uses 147,613 Weibo text check-ins in Xiamen from 2017 to quantify residents' sentiments in 1,096 neighborhoods in the city. A multilevel regression model and gradient boosting decision tree (GBDT) model are used to investigate the multilevel and nonlinear effects of the built environment of neighborhoods and subdistricts on residents' sentiments. Results: The results show the following: (1) The multilevel regression model indicates that at the neighborhood level, a high land value, low plot ratio, low population density, and neighborhoods close to water are more likely to improve the residents' sentiments. At the subdistrict level, more green space and commercial land, less industry, higher building density and road density, and a smaller migrant population are more likely to promote positive sentiments. Approximately 19% of the total variance in the sentiments occurred among subdistricts. (2) The proportion of green space and commercial land, and the density of buildings and roads are linearly correlated with residents' sentiments. The land value is a basic need and exhibits a nonlinear correlation with sentiments. The plot ratio, population density, and the proportions of industrial land and the migrant population are advanced needs and are nonlinearly correlated with sentiments. Discussion: The quantitative analysis of sentiments enables setting a threshold of the influence of the built environment on residents' sentiments in neighborhoods and surrounding areas. Our results provide data support for urban planning and implementing targeted measures to improve the living environment of residents.


Subject(s)
Social Media , Humans , Built Environment , China , Cities , Attitude
4.
Article in English | MEDLINE | ID: mdl-32290445

ABSTRACT

The outbreak of COVID-19 in China has attracted wide attention from all over the world. The impact of COVID-19 has been significant, raising concerns regarding public health risks in China and worldwide. Migration may be the primary reason for the long-distance transmission of the disease. In this study, the following analyses were performed. (1) Using the data from the China migrant population survey in 2017 (Sample size = 432,907), a matrix of the residence-birthplace (R-B matrix) of migrant populations is constructed. The matrix was used to analyze the confirmed cases of COVID-19 at Prefecture-level Cities from February 1-15, 2020 after the outbreak in Wuhan, by calculating the probability of influx or outflow migration. We obtain a satisfactory regression analysis result (R2 = 0.826-0.887, N = 330). (2) We use this R-B matrix to simulate an outbreak scenario in 22 immigrant cities in China, and propose risk prevention measures after the outbreak. If similar scenarios occur in the cities of Wenzhou, Guangzhou, Dongguan, or Shenzhen, the disease transmission will be wider. (3) We also use a matrix to determine that cities in Henan province, Anhui province, and Municipalities (such as Beijing, Shanghai, Guangzhou, Shenzhen, Chongqing) in China will have a high risk level of disease carriers after a similar emerging epidemic outbreak scenario due to a high influx or outflow of migrant populations.


Subject(s)
Coronavirus Infections/transmission , Pandemics , Pneumonia, Viral/transmission , Population Dynamics , Transients and Migrants , Betacoronavirus , COVID-19 , China/epidemiology , Cities , Coronavirus Infections/epidemiology , Disease Outbreaks , Disease Transmission, Infectious , Epidemics , Humans , Models, Biological , Pneumonia, Viral/epidemiology , Population Surveillance , Risk Factors , SARS-CoV-2 , Travel
SELECTION OF CITATIONS
SEARCH DETAIL
...