Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 25(10): 2132-2141, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36006740

ABSTRACT

Past and recent studies have focused on the effects of global change drivers such as species invasions on species extinction. However, as we enter the United Nations Decade of Ecosystem Restoration the aim must switch to understanding how invasive-species management affects the persistence of the remaining species in a community. Focusing on plant-pollinator interactions, we test how species persistence is affected by restoration via the removal of invasive plant species. Restoration had a clear positive effect on plant persistence, whereas there was no difference between across treatments for pollinator persistence in the early season, but a clear effect in late season, with higher persistence in unrestored sites. Network structure affected only pollinator persistence, while centrality had a strong positive effect on both plants and pollinators. Our results suggest a hidden effect of invasive plants-although they may compete with native plant species, invasive plants may provide important resources for pollinators, at least in the short term.


Subject(s)
Ecosystem , Pollination , Animals , Extinction, Biological , Insecta , Introduced Species , Plants
2.
Preprint in Portuguese | SciELO Preprints | ID: pps-128

ABSTRACT

This is the first report of the 'Observatório COVID191 - Grupo: Redes de Contágio ­ Laboratório de Estudos de Defesa' for the South region of Brazil. We have combined data of confirmed cases of the new coronavirus (SARS-CoV-2) for the South available up to 17/04/2020, with structural analyses of road networks, from within and between states, to estimate the vulnerability and potential influence of the South micro-regions to propagate the disease.


Este é o primeiro relatório do Observatório COVID19 - Grupo: Redes de Contágio ­ Laboratório de Estudos de Defesa para a região Sul do Brasil. Combinamos dados de casos confirmados do novo coronavírus (SARS-CoV-2) para o Sul, disponíveis até o dia 17/04/2020, com análises estruturais da rede de rotas rodoviárias intra e interestaduais para estimarmos a vulnerabilidade e potencial influência das microrregiões sulinas na propagação da doença.

3.
Sci Rep ; 9(1): 676, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679559

ABSTRACT

Perturbations, such as fluctuations in abundance, can ripple across species assemblages through ecological interactions. Furthermore, the way in which ecological interactions are organized into a network and the interaction strengths connecting species may be important for cascading effects. Previous work revealed that network structure determines how cascading effects spread across species assemblages. A next step is to understand how interaction strengths influence cascading effects. Here, we assume that perturbations have negative effects, and we evaluate whether interaction strength affects network robustness to cascading effects in mutualistic interactions, and examine the role of network structure in mediating perturbation cascades when interaction strength is incorporated. We combine empirical data on 18 mutualistic networks, two simulations scenarios, and network theory, to investigate how network structure affects perturbation spreading time, a proxy of network robustness to cascading effects. Simulations in which we included interaction strength presented higher mean spreading time, indicating that interaction strength increases network robustness. Richness, modularity, and nestedness had a strong, positive effect, on mean perturbation spreading time regardless of the interaction strengths. We found that network structure and the distribution of interaction strengths affected communities' robustness to perturbation spreading. Our results contribute to the discussion on the danger that ecosystems face when species, and interactions alike, become extinct.

4.
Syst Biol ; 67(5): 861-872, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29471501

ABSTRACT

Despite the fact that natural selection underlies both traits and interactions, evolutionary models often neglect that ecological interactions may, and in many cases do, influence the evolution of traits. Herein, we explore the interdependence of ecological interactions and functional traits in the pollination associations of hawkmoths and flowering plants. Specifically, we develop an adaptation of the Ornstein-Uhlenbeck model of trait evolution that allows us to study the influence of plant corolla depth and observed hawkmoth-plant interactions on the evolution of hawkmoth proboscis length. Across diverse modelling scenarios, we find that the inclusion of contemporary interactions can provide a better description of trait evolution than the null expectation. Moreover, we show that the pollination interactions provide more-likely models of hawkmoth trait evolution when interactions are considered at increasingly fine-scale groups of hawkmoths. Finally, we demonstrate how the results of best-fit modeling approaches can implicitly support the association between interactions and trait evolution that our method explicitly examines. In showing that contemporary interactions can provide insight into the historical evolution of hawkmoth proboscis length, we demonstrate the clear utility of incorporating additional ecological information to models designed to study past trait evolution.


Subject(s)
Biological Evolution , Magnoliopsida/anatomy & histology , Moths/anatomy & histology , Animals , Flowers/anatomy & histology , Models, Biological , Phenotype , Pollination
5.
Ecol Lett ; 20(10): 1261-1272, 2017 10.
Article in English | MEDLINE | ID: mdl-28921857

ABSTRACT

Species and interactions are being lost at alarming rates and it is imperative to understand how communities assemble if we have to prevent their collapse and restore lost interactions. Using an 8-year dataset comprising nearly 20 000 pollinator visitation records, we explore the assembly of plant-pollinator communities at native plant restoration sites in an agricultural landscape. We find that species occupy highly dynamic network positions through time, causing the assembly process to be punctuated by major network reorganisations. The most persistent pollinator species are also the most variable in their network positions, contrary to what preferential attachment - the most widely studied theory of ecological network assembly - predicts. Instead, we suggest assembly occurs via an opportunistic attachment process. Our results contribute to our understanding of how communities assembly and how species interactions change through time while helping to inform efforts to reassemble robust communities.


Subject(s)
Agriculture , Plants , Pollination , Ecosystem
6.
PLoS One ; 10(7): e0130554, 2015.
Article in English | MEDLINE | ID: mdl-26161777

ABSTRACT

Enigmatic amphibian declines were first reported in southern and southeastern Brazil in the late 1980s and included several species of stream-dwelling anurans (families Hylodidae and Cycloramphidae). At that time, we were unaware of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd); therefore, pollution, habitat loss, fragmentation and unusual climatic events were hypothesized as primary causes of these declines. We now know that multiple lineages of Bd have infected amphibians of the Brazilian Atlantic forest for over a century, yet declines have not been associated specifically with Bd outbreaks. Because stream-dwelling anurans occupy an environmental hotspot ideal for disease transmission, we investigated temporal variation in population and infection dynamics of three stream-adapted species (Hylodes asper, H. phyllodes, and Cycloramphus boraceiensis) on the northern coast of São Paulo state, Brazil. We surveyed standardized transects along streams for four years, and show that fluctuations in the number of frogs correlate with specific climatic variables that also increase the likelihood of Bd infections. In addition, we found that Bd infection probability in C. boraceiensis, a nocturnal species, was significantly higher than in Hylodes spp., which are diurnal, suggesting that the nocturnal activity may either facilitate Bd zoospore transmission or increase susceptibility of hosts. Our findings indicate that, despite long-term persistence of Bd in Brazil, some hosts persist with seasonally variable infections, and thus future persistence in the face of climate change will depend on the relative effect of those changes on frog recruitment and pathogen proliferation.


Subject(s)
Anura/microbiology , Chytridiomycota/isolation & purification , Mycoses/veterinary , Animals , Brazil , Climate Change , Mycoses/transmission , Population Dynamics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...