Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 320: 121204, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37659807

ABSTRACT

Determining the safety, antigenicity, and immunogenicity by in vitro and in vivo studies is a prerequisite for the development of new vaccines. And this study investigated it for a vaccine made from Streptococcus pneumoniae serotypes 2, 5, 12F, 18C, and 22F. The crude CPS was purified and partially depolymerized by conventional and trifluoroacetic acid methods. 1H NMR analysis confirmed the identity of the depolymerized CPS which gave similar profiles to reference polysaccharides, except for serotype 18C which was de-O-acetylated during TFA treatment. The antigenicity of the depolymerized CPS prepared by either method was comparable to that of the native CPS for serotypes 2, 5, 18C, and 22F based on multiplex bead based competitive inhibition assay. This study demonstrated a relationship between antigenicity and immunogenicity, which offers more suitable candidates for conjugation. It was found that after partial depolymerization process, the CPS with optimal molecular size resulted in higher antigenicity. The immunogenicity of S. pneumoniae serotype 2 conjugates in mice was evaluated by opsonophagocytic assay and a multiplex bead-based assay, wherein on day 42 after immunization, the total and functional IgG titer was found to be increased by 32-fold.

2.
Carbohydr Polym ; 294: 119783, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868758

ABSTRACT

A high-quality and cost-effective purification procedure is one of the most important requirements for manufacturing glycoconjugate vaccines. The goal of the present work was to devise a method for removing impurities such as protein and nucleic acid from Streptococcus pneumoniae serotype 2 capsular polysaccharides (CPS). The use of hydrogen peroxide for the reduction of impurities of crude CPS was investigated. Centrifugation followed by filtration decreased protein contaminant of the hydrogen peroxide-treated CPS to meet the limit specified by WHO. The nucleic acid impurity remaining was removed by a further step of endonuclease treatment to yield the purified CPS. Characterization of purified CPS was evaluated by various analytical techniques including 1H NMR and antigenicity by competitive inhibition assay. Various hydrogen peroxide concentrations have significant impact on the antigenic property of CPS. Whereas, optimum process conditions can preserve the native characteristics of CPS.


Subject(s)
Hydrogen Peroxide , Nucleic Acids , Bacterial Capsules/chemistry , Endonucleases/analysis , Endonucleases/metabolism , Hydrogen Peroxide/metabolism , Polysaccharides, Bacterial/chemistry , Serogroup
3.
Carbohydr Res ; 512: 108503, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35085789

ABSTRACT

Partial depolymerization of bacterial capsular polysaccharides (CPS) is an essential process carried out before its use as an antigenic preparation in a vaccine industry. Choice of CPS depolymerization methods depends on the process robustness, reproducibility, yield, retention of CPS bioactivity, etc. Partial depolymerization methods based on chemicals, enzymes, mechanical, thermal, etc. have been subject of many investigations before. Partial depolymerization of Streptococcus pneumoniae serotype 2 purified CPS was conducted by methods such as acid hydrolysis, microfluidization, ultrasonication, thermal and microwave. Partial depolymerization of the CPS was evaluated by size exclusion high performance liquid chromatography, whereas structural identity and conformity of CPS was ensured by 1H NMR spectroscopy. The antigenicity of CPS was assessed by bead based competitive inhibition assay. Microwave and thermal methods effectively depolymerized CPS and reduced the concentration of cell wall polysaccharide (CWPS) impurity, but both methods have a negative impact on the antigenicity of CPS. Whereas the trifluoroacetic acid treatment not only depolymerized the CPS but completely removed the CWPS while retaining the antigenicity of 92 ± 4% and this method is advantageous over other methods.


Subject(s)
Polysaccharides, Bacterial , Streptococcus pneumoniae , Bacterial Capsules/chemistry , Magnetic Resonance Spectroscopy , Polysaccharides, Bacterial/chemistry , Reproducibility of Results , Serogroup , Streptococcus pneumoniae/chemistry
4.
Carbohydr Polym ; 261: 117859, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33766348

ABSTRACT

Development of an effective purification process in order to provide low cost and high-quality vaccine is the necessity of glycoconjugate vaccine manufacturing industries. In the present study, we have attempted to develop a method for simultaneous purification and depolymerization process for capsular polysaccharides (CPS) derived from Streptococcus pneumoniae serotype 2. Trifluoroacetic acid (TFA) was used to precipitate impurities which were then removed by centrifugation. It was observed that the TFA treatment could simultaneously depolymerize the CPS and purify it. The purified and depolymerized CPS was analyzed for its purity, structural identity and conformity, molecular size, antigenicity to meet desired quality specifications. The obtained results showed that the purification and depolymerization of S. pneumoniae serotype 2 CPS did not affect the antigenicity of CPS.


Subject(s)
Bacterial Capsules/chemistry , Polymerization/drug effects , Polysaccharides, Bacterial/isolation & purification , Streptococcus pneumoniae/drug effects , Trifluoroacetic Acid/pharmacology , Bacterial Capsules/drug effects , Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Immunogenicity, Vaccine/drug effects , Microbial Viability/drug effects , Pneumococcal Infections/prevention & control , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/immunology , Polysaccharides, Bacterial/metabolism , Serogroup , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/immunology , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...