Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682874

ABSTRACT

To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Vitis , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Glucose/metabolism , Plant Proteins/metabolism , Signal Transduction , Vitis/metabolism
2.
Front Plant Sci ; 10: 991, 2019.
Article in English | MEDLINE | ID: mdl-31428114

ABSTRACT

Eutypa lata is the causal agent of eutypa dieback, one of the most destructive grapevine trunk disease that causes severe economic losses in vineyards worldwide. This fungus causes brown sectorial necrosis in wood which affect the vegetative growth. Despite intense research efforts made in the past years, no cure currently exists for this disease. Host responses to eutypa dieback are difficult to address because E. lata is a wood pathogen that causes foliar symptoms several years after infection. With the aim to classify the level of susceptibility of grapevine cultivars to the foliar symptoms caused by E. lata, artificial inoculations of Merlot, Cabernet Sauvignon, and Ugni Blanc were conducted over 3 years. Merlot was the most tolerant cultivar, whereas Ugni Blanc and Cabernet Sauvignon exhibited higher and differential levels of susceptibility. We took advantage of their contrasting phenotypes to explore their defense responses, including the activation of pathogenesis-related (PR) genes, oxylipin and phenylpropanoid pathways and the accumulation of stilbenes. These analyses were carried out using the millicell system that enables the molecular dialogue between E. lata mycelium and grapevine leaves to take place without physical contact. Merlot responded to E. lata by inducing the expression of a large number of defense-related genes. On the contrary, Ugni Blanc failed to activate such defense responses despite being able to perceive the fungus. To gain insight into the role of carbon partitioning in E. lata infected grapevine, we monitored the expression of plant genes involved in sugar transport and cleavage, and measured invertase activities. Our results evidence a coordinated up-regulation of VvHT5 and VvcwINV genes, and a stimulation of the cell wall invertase activity in leaves of Merlot elicited by E. lata, but not in Ugni Blanc. Altogether, this study indicates that the degree of cultivar susceptibility is associated with the activation of host defense responses, including extracellular sucrolytic machinery and hexose uptake during the grapevine/E. lata interaction. Given the role of these activities in governing carbon allocation through the plant, we postulate that the availability of sugar resources for either the host or the fungus is crucial for the outcome of the interaction.

3.
FEBS Open Bio ; 8(5): 784-798, 2018 May.
Article in English | MEDLINE | ID: mdl-29744293

ABSTRACT

A novel biological model was created for the comparison of grapevine embryogenic cells (EC) and nonembryogenic cells (NEC) sharing a common genetic background but distinct phenotypes, when cultured on their respective most appropriate media. Cytological characterization, 1H-NMR analysis of intracellular metabolites, and glycolytic enzyme activities provided evidence for the marked metabolic differences between EC and NEC. The EC were characterized by a moderate and organized cell proliferation, coupled with a low flux through glycolysis, high capacity of phosphoenolpyruvate carboxylase and glucokinase, and high oxygen consumption. The NEC displayed strong anarchic growth, and their high rate of glycolysis due to the low energetic efficiency of the fermentative metabolism is confirmed by increased enolase capacity and low oxygen consumption.

4.
Sci Rep ; 7(1): 17121, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29215097

ABSTRACT

Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of Arabidopsis thaliana with the necrotrophic fungus Botrytis cinerea using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that B. cinerea is able to actively absorb glucose and fructose with equal capacities. Challenged Arabidopsis cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between Arabidopsis cells and B. cinerea triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.


Subject(s)
Arabidopsis/metabolism , Hexoses/metabolism , Host-Pathogen Interactions , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Botrytis/pathogenicity , Cell Respiration , Glycolysis , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism
5.
J Exp Bot ; 68(20): 5599-5613, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29088431

ABSTRACT

Until now, specific inhibitors of sucrose carriers were not available. This led us to study the properties of the recently synthesized D-glucose-fenpiclonil conjugate (D-GFC). This large amphiphilic glucoside exhibited an extremely low phloem systemicity in contrast to L-amino acid-fenpiclonil conjugates. Using Ricinus seedlings, the effect of D-GFC on 0.5 mM [14C]sucrose (Suc), 3-O-[3H]methylglucose, and [3H]glutamine uptake by cotyledon tissues was compared with that of p-chloromercuribenzenesulfonic acid (PCMBS). D-GFC dramatically inhibited H+-Suc symport at the same concentrations as PCMBS (0.5 and 1 mM), but in contrast to the thiol reagent, it did not affect 3-O-methylglucose and glutamine transport, nor the acidification of the incubation medium by cotyledon tissues. Similarly, 0.5 mM D-GFC inhibited active Suc uptake by Vicia faba leaf tissues and by Saccharomyces cerevisiae cells transformed with AtSUC2, a gene involved in Suc phloem loading in Arabidopsis, by approximately 80%. The data indicated that D-GFC was a potent inhibitor of Suc uptake from the endosperm and of Suc phloem loading. It is the first chemical known to exhibit such specificity, at least in Ricinus, and this property permitted the quantification of the two routes involved in phloem loading of endogenous sugars after endosperm removal.


Subject(s)
3-O-Methylglucose/antagonists & inhibitors , 4-Chloromercuribenzenesulfonate/pharmacology , Glucosides/pharmacology , Glutamine/antagonists & inhibitors , Ricinus/metabolism , Sucrose/antagonists & inhibitors , Biological Transport , Glucose , Phloem/metabolism , Pyrroles , Seedlings/metabolism
6.
Front Plant Sci ; 7: 1899, 2016.
Article in English | MEDLINE | ID: mdl-28066461

ABSTRACT

Cell wall invertases (CWIN) cleave sucrose into glucose and fructose in the apoplast. CWINs are key regulators of carbon partitioning and source/sink relationships during growth, development and under biotic stresses. In this report, we monitored the expression/activity of Arabidopsis cell wall invertases in organs behaving as source, sink, or subjected to a source/sink transition after infection with the necrotrophic fungus Botrytis cinerea. We showed that organs with different source/sink status displayed differential CWIN activities, depending on carbohydrate needs or availabilities in the surrounding environment, through a transcriptional and posttranslational regulation. Loss-of-function mutation of the Arabidopsis cell wall invertase 1 gene, AtCWIN1, showed that the corresponding protein was the main contributor to the apoplastic sucrose cleaving activity in both leaves and roots. The CWIN-deficient mutant cwin1-1 exhibited a reduced capacity to actively take up external sucrose in roots, indicating that this process is mainly dependent on the sucrolytic activity of AtCWIN1. Using T-DNA and CRISPR/Cas9 mutants impaired in hexose transport, we demonstrated that external sucrose is actively absorbed in the form of hexoses by a sugar/H+ symport system involving the coordinated activity of AtCWIN1 with several Sugar Transporter Proteins (STP) of the plasma membrane, i.e., STP1 and STP13. Part of external sucrose was imported without apoplastic cleavage into cwin1-1 seedling roots, highlighting an alternative AtCWIN1-independent pathway for the assimilation of external sucrose. Accordingly, we showed that several genes encoding sucrose transporters of the plasma membrane were expressed. We also detected transcript accumulation of vacuolar invertase (VIN)-encoding genes and high VIN activities. Upon infection, AtCWIN1 was responsible for all the Botrytis-induced apoplastic invertase activity. We detected a transcriptional activation of several AtSUC and AtVIN genes accompanied with an enhanced vacuolar invertase activity, suggesting that the AtCWIN1-independent pathway is efficient upon infection. In absence of AtCWIN1, we postulate that intracellular sucrose hydrolysis is sufficient to provide intracellular hexoses to maintain sugar homeostasis in host cells and to fuel plant defenses. Finally, we demonstrated that Botrytis cinerea possesses its own functional sucrolytic machinery and hexose uptake system, and does not rely on the host apoplastic invertases.

7.
J Plant Physiol ; 171(16): 1510-3, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25108262

ABSTRACT

In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production.


Subject(s)
Catharanthus/enzymology , Catharanthus/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Promoter Regions, Genetic , Transcription Factors/genetics , Enzymes/genetics , Enzymes/metabolism , Erythritol/analogs & derivatives , Erythritol/metabolism , Molecular Sequence Data , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Transcription Factors/metabolism
8.
Plant Mol Biol ; 85(4-5): 473-84, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24817131

ABSTRACT

Botrytis cinerea is the causing agent of the grey mold disease in more than 200 crop species. While signaling pathways leading to the basal resistance against this fungus are well described, the role of the import of sugars into host cells remains to be investigated. In Arabidopsis thaliana, apoplastic hexose retrieval is mediated by the activity of sugar transport proteins (STPs). Expression analysis of the 14 STP genes revealed that only STP13 was induced in leaves challenged with B. cinerea. STP13-modified plants were produced and assayed for their resistance to B. cinerea and glucose transport activity. We report that STP13-deficient plants exhibited an enhanced susceptibility and a reduced rate of glucose uptake. Conversely, plants with a high constitutive level of STP13 protein displayed an improved capacity to absorb glucose and an enhanced resistance phenotype. The correlation between STP13 transcripts, protein accumulation, glucose uptake rate and resistance level indicates that STP13 contributes to the basal resistance to B. cinerea by limiting symptom development and points out the importance of the host intracellular sugar uptake in this process. We postulate that STP13 would participate in the active resorption of hexoses to support the increased energy demand to trigger plant defense reactions and to deprive the fungus by changing sugar fluxes toward host cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Botrytis/physiology , Gene Expression Regulation, Plant/physiology , Glucose/metabolism , Symporters/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Biological Transport , Botrytis/immunology , Disease Resistance , Genetic Predisposition to Disease , Mutation , Plant Diseases/genetics , Symporters/genetics
9.
Plant Cell ; 15(9): 2165-80, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12953118

ABSTRACT

The function of ASR (ABA [abscisic acid]-, stress-, and ripening-induced) proteins remains unknown. A grape ASR, VvMSA, was isolated by means of a yeast one-hybrid approach using as a target the proximal promoter of a grape putative monosaccharide transporter (VvHT1). This promoter contains two sugar boxes, and its activity is induced by sucrose and glucose. VvMSA and VvHT1 share similar patterns of expression during the ripening of grape. Both genes are inducible by sucrose in grape berry cell culture, and sugar induction of VvMSA is enhanced strongly by ABA. These data suggest that VvMSA is involved in a common transduction pathway of sugar and ABA signaling. Gel-shift assays demonstrate a specific binding of VvMSA to the 160-bp fragment of the VvHT1 promoter and more precisely to two sugar-responsive elements present in this target. The positive regulation of VvHT1 promoter activity by VvMSA also is shown in planta by coexpression experiments. The nuclear localization of the yellow fluorescent protein-VvMSA fusion protein and the functionality of the VvMSA nuclear localization signal are demonstrated. Thus, a biological function is ascribed to an ASR protein. VvMSA acts as part of a transcription-regulating complex involved in sugar and ABA signaling.


Subject(s)
Abscisic Acid/pharmacology , Carbohydrates/pharmacology , Plant Proteins/genetics , Vitis/genetics , Amino Acid Sequence , Base Sequence , Cells, Cultured , Cloning, Molecular , Consensus Sequence/genetics , DNA, Complementary/chemistry , DNA, Complementary/genetics , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Molecular Sequence Data , Nuclear Localization Signals/genetics , Plant Proteins/metabolism , Protein Interaction Mapping , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Signal Transduction , Two-Hybrid System Techniques , Vitis/drug effects , Vitis/growth & development
10.
Mol Plant Microbe Interact ; 16(5): 456-64, 2003 May.
Article in English | MEDLINE | ID: mdl-12744517

ABSTRACT

Nonspecific lipid transfer proteins (nsLTPs) are small, basic cystein-rich proteins believed to be involved in plant defense mechanisms. Three cDNAs coding nsLTPs from grape (Vitis vinifera sp.) were cloned by reverse-transcriptase-polymerase chain reaction (RT-PCR) and PCR. The expression of nsLTP genes was investigated in 41B-rootstock grape cell suspension, in response to various defense-related signal molecules. Ergosterol (a fungi-specific sterol) and a proteinaceous elicitor purified from Botrytis cinerea strongly and rapidly induced the accumulation of nsLTP mRNAs. Jasmonic acid, cholesterol, and sitosterol also promoted nsLTPs mRNA accumulation, although to a lesser extent, whereas salicylic acid had no effect. High performance liquid chromatography analysis indicated that the amounts of three LTP isoforms (previously named P1, P2, and P4) were increased by ergosterol. None of the four isoforms displayed any significant antifungal properties, with the exception of the P4 isoform, which reduced Botrytis mycelium growth in vitro, but only in calcium-free medium. The results are discussed in the context of plant-pathogen interactions.


Subject(s)
Botrytis/growth & development , Carrier Proteins/genetics , Plant Diseases/genetics , Vitis/genetics , Amino Acid Sequence , Carrier Proteins/metabolism , Cells, Cultured , Cholesterol/pharmacology , Cloning, Molecular , Cyclopentanes/pharmacology , DNA, Complementary/chemistry , DNA, Complementary/genetics , Ergosterol/pharmacology , Gene Expression Regulation, Plant/drug effects , Molecular Sequence Data , Oxylipins , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Salicylic Acid/pharmacology , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sitosterols/pharmacology , Vitis/cytology , Vitis/microbiology
11.
J Exp Bot ; 54(385): 1193-204, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12654870

ABSTRACT

Tobacco plants were transformed by leaf disc regeneration with the VvHT1 (Vitis vinifera hexose transporter 1) cDNA under the control of the constitutive CaMV 35S promoter in a sense or antisense orientation. Among the 20 sense plants and 10 antisense plants obtained, two sense plants showed a mutant phenotype when grown in vitro, with stunted growth and an increase in the (leaves+stem)/roots dry weight ratio. The rate of [(3)H]-glucose uptake in leaf discs from these plants was decreased to 25% of the value measured in control plants. The amount of VvHT1 transgene and of host monosaccharide transporter MST transcripts in the leaves were studied by RNA gel blot analysis. The VvHT1 transcripts were usually present, but the amount of MST transcripts was the lowest in the plants that exhibited the most marked phenotype. Although the phenotype was lost when the plants were transferred from in vitro to greenhouse conditions, it was found again in vitro in the progeny obtained by self-pollination or by back-cross. The data show that VvHT1 sense expression resulted in unidirectional post-transcriptional gene inactivation of MST in some of the transformants, with dramatic effects on growth. They provide the first example of plants modified for hexose transport by post-transcriptional gene silencing. Some of the antisense plants also showed reduced expression of MST, and decreased growth. These results indicate that, like the sucrose transporters, hexose transporters play an important role in assimilate transport and in morphogenesis.


Subject(s)
Monosaccharide Transport Proteins/genetics , Nicotiana/genetics , Vitis/genetics , Carbohydrate Metabolism , Cloning, Molecular , DNA, Complementary/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Phenotype , Plants, Genetically Modified , Nicotiana/growth & development , Nicotiana/metabolism , Vitis/metabolism
12.
Plant Physiol ; 131(1): 326-34, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12529540

ABSTRACT

Different lengths of the promoter of grape (Vitis vinifera) VvHT1 (Hexose Transporter 1) gene, which encodes a putative hexose transporter expressed during the ripening of grape, have been transcriptionally fused to the beta-glucuronidase reporter gene. In transgenic tobacco (Nicotiana tabacum) transformed with these constructs, VvHT1 promoters were clearly responsible for the sink organ preferential expression. The potential sugar effectors of VvHT1 promoter were studied in tobacco cv Bright-Yellow 2 cells transformed with chimeric constructs. Glucose (56 mM), sucrose (Suc; 58 mM), and the non-transported Suc isomer palatinose doubled the beta-glucuronidase activity conferred by the VvHT1 promoter, whereas fructose did not affect it. These effects were the strongest with the 2.4-kb promoter, which contains all putative sugar-responsive elements (activating and repressing), but they were also significant with the 0.3-kb promoter, which contains only activating sugar boxes. The induction of VvHT1 expression by both Suc and palatinose was confirmed in the homologous grape berry cell culture. The data provide the first example of a putative sugar transporter, which is induced by both glucose and Suc in higher plants. Although induction of VvHT1 expression by Suc does not require transport, the presence of glucosyl moiety is necessary for Suc sensing. These results provide new insights into sugar sensing and signaling in plants.


Subject(s)
Carbohydrates/pharmacology , Isomaltose/analogs & derivatives , Monosaccharide Transport Proteins/genetics , Vitis/genetics , Cells, Cultured , Fructose/pharmacology , Gene Expression Regulation, Plant/drug effects , Glucose/pharmacology , Glucuronidase/drug effects , Glucuronidase/genetics , Glucuronidase/metabolism , Isomaltose/pharmacology , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sucrose/pharmacology , Nicotiana/cytology , Vitis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL