Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Nutr Diabetes ; 14(1): 45, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886355

ABSTRACT

BACKGROUND/OBJECTIVES: Increased free fatty acid (FFA) promotes adiponectin secretion in healthy subjects and induces inflammation in diabetes. Given the potential pro-inflammatory role of adiponectin in "adiponectin paradox", we performed this study in patients with type 2 diabetes mellitus (T2DM) to assess the association of FFA with adiponectin and to investigate whether adiponectin mediates FFA-related inflammation. METHODS: This cross-sectional study consisted of adult patients with T2DM. FFA, adiponectin, and tumor necrosis factor-α (TNF-α) were assayed from fasting venous blood after overnight fasting for at least 8 h. Multivariable linear regression analysis and restricted cubic splines (RCS) analysis were performed to identify the association between FFA and adiponectin. Mediation analysis was performed to determine the mediating effect of adiponectin on the association between FFA and TNF-α. RESULTS: This study included 495 participants, with 332 males (67.1%) and a mean age of 47.0 ± 11.2 years. FFA was positively associated with adiponectin (b = 0.126, 95%CI: 0.036-0.215, P = 0.006) and was the main contributor to the increase of adiponectin (standardized b = 0.141). The RCS analysis demonstrated that adiponectin increased with FFA when FFA was less than 0.7 mmol/L but did not further increase thereafter (Poverall < 0.001 and Pnon-linear < 0.001). In addition, adiponectin mediated the association between FFA and TNF-α. The mediating effect was 0.08 (95%CI: 0.03-0.13, P = 0.003) and the mediating effect percentage was 26.8% (95%CI: 4.5-49.2, P = 0.02). CONCLUSIONS: In patients with T2DM, FFA was positively associated with adiponectin when FFA was less than 0.7 mmol/L. Elevated adiponectin mediated FFA-related inflammation. This study may provide insights into the pro-inflammatory effect of adiponectin in T2DM.


Subject(s)
Adiponectin , Diabetes Mellitus, Type 2 , Fatty Acids, Nonesterified , Tumor Necrosis Factor-alpha , Humans , Adiponectin/blood , Male , Fatty Acids, Nonesterified/blood , Female , Middle Aged , Tumor Necrosis Factor-alpha/blood , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Adult , Inflammation/blood
2.
Diabetologia ; 66(11): 1971-1982, 2023 11.
Article in English | MEDLINE | ID: mdl-37488322

ABSTRACT

Type 1 diabetes results from the poorly understood process of islet autoimmunity, which ultimately leads to the loss of functional pancreatic beta cells. Mounting evidence supports the notion that the activation and evolution of islet autoimmunity in genetically susceptible people is contingent upon early life exposures affecting the islets, especially beta cells. Here, we review some of the recent advances and studies that highlight the roles of these changes as well as antigen presentation and stress response pathways in beta cells in the onset and propagation of the autoimmune process in type 1 diabetes. Future progress in this area holds promise for advancing islet- and beta cell-directed therapies that could be implemented in the early stages of the disease and could be combined with immunotherapies.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/metabolism , Autoimmunity/physiology , Islets of Langerhans/metabolism , Genetic Predisposition to Disease
3.
iScience ; 26(5): 106664, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37168570

ABSTRACT

SNARE-mediated membrane fusion plays a crucial role in presynaptic vesicle exocytosis and also in postsynaptic receptor delivery. The latter is considered particularly important for synaptic plasticity and learning and memory, yet the identity of the key SNARE proteins remains elusive. Here, we investigate the role of neuronal synaptosomal-associated protein-23 (SNAP-23) by analyzing pyramidal-neuron specific SNAP-23 conditional knockout (cKO) mice. Electrophysiological analysis of SNAP-23 deficient neurons using acute hippocampal slices showed normal basal neurotransmission in CA3-CA1 synapses with unchanged AMPA and NMDA currents. Nevertheless, we found theta-burst stimulation-induced long-term potentiation (LTP) was vastly diminished in SNAP-23 cKO slices. Moreover, unlike syntaxin-4 cKO mice where both basal neurotransmission and LTP decrease manifested changes in a broad set of behavioral tasks, deficits of SNAP-23 cKO are more limited to spatial memory. Our data reveal that neuronal SNAP-23 is selectively crucial for synaptic plasticity and spatial memory without affecting basal glutamate receptor function.

4.
Cell Rep Med ; 4(5): 101051, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37196633

ABSTRACT

Alterations in the microbiome correlate with improved metabolism in patients following bariatric surgery. While fecal microbiota transplantation (FMT) from obese patients into germ-free (GF) mice has suggested a significant role of the gut microbiome in metabolic improvements following bariatric surgery, causality remains to be confirmed. Here, we perform paired FMT from the same obese patients (BMI > 40; four patients), pre- and 1 or 6 months post-Roux-en-Y gastric bypass (RYGB) surgery, into Western diet-fed GF mice. Mice colonized by FMT from patients' post-surgery stool exhibit significant changes in microbiota composition and metabolomic profiles and, most importantly, improved insulin sensitivity compared with pre-RYGB FMT mice. Mechanistically, mice harboring the post-RYGB microbiome show increased brown fat mass and activity and exhibit increased energy expenditure. Moreover, improvements in immune homeostasis within the white adipose tissue are also observed. Altogether, these findings point to a direct role for the gut microbiome in mediating improved metabolic health post-RYGB surgery.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Insulin Resistance , Mice , Animals , Adipose Tissue, Brown , Obesity/surgery , Energy Metabolism
5.
Diabetes Obes Metab ; 25(6): 1714-1722, 2023 06.
Article in English | MEDLINE | ID: mdl-36811214

ABSTRACT

AIM: To assess whether the beta-cell function of inpatients undergoing antidiabetic treatment influences achieving time in range (TIR) and time above range (TAR) targets. MATERIALS AND METHODS: This cross-sectional study included 180 inpatients with type 2 diabetes. TIR and TAR were assessed by a continuous glucose monitoring system, with target achievement defined as TIR more than 70% and TAR less than 25%. Beta-cell function was assessed by the insulin secretion-sensitivity index-2 (ISSI2). RESULTS: Following antidiabetic treatment, logistic regression analysis showed that lower ISSI2 was associated with a decreased number of inpatients achieving TIR (OR = 3.10, 95% CI: 1.19-8.06) and TAR (OR = 3.40, 95% CI: 1.35-8.55) targets after adjusting for potential confounders. Similar associations still existed in those participants treated with insulin secretagogues (TIR: OR = 2.91, 95% CI: 0.90-9.36, P = .07; TAR, OR = 3.14, 95% CI: 1.01-9.80) or adequate insulin therapy (TIR: OR = 2.84, 95% CI: 0.91-8.81, P = .07; TAR, OR = 3.24, 95% CI: 1.08-9.67). Furthermore, receiver operating characteristic curves showed that the diagnostic value of the ISSI2 for achieving TIR and TAR targets was 0.73 (95% CI: 0.66-0.80) and 0.71 (95% CI: 0.63-0.79), respectively. CONCLUSIONS: Beta-cell function was associated with achieving TIR and TAR targets. Stimulating insulin secretion or exogenous insulin treatment could not overcome the disadvantage of lower beta-cell function on glycaemic control.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Hypoglycemic Agents/therapeutic use , Blood Glucose Self-Monitoring , Cross-Sectional Studies , Inpatients , Blood Glucose/analysis , Insulin/therapeutic use
6.
Exp Clin Endocrinol Diabetes ; 131(4): 198-204, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36796421

ABSTRACT

BACKGROUND: To examine whether the different patterns of post-load insulin secretion can identify the heterogeneity of type 2 diabetes mellitus (T2DM). METHODS: Six hundred twenty-five inpatients with T2DM at Jining No. 1 People's Hospital were recruited from January 2019 to October 2021. The 140 g steamed bread meal test (SBMT) was conducted on patients with T2DM, and glucose, insulin, and C-peptide levels were recorded at 0, 60, 120, and 180 min. To avoid the effect of exogenous insulin, patients were categorized into three different classes by latent class trajectory analysis based on the post-load secretion patterns of C-peptide. The difference in short- and long-term glycemic status and prevalence of complications distributed among the three classes were compared by multiple linear regression and multiple logistic regression, respectively. RESULTS: There were significant differences in long-term glycemic status (e. g., HbA1c) and short-term glycemic status (e. g., mean blood glucose, time in range) among the three classes. The difference in short-term glycemic status was similar in terms of the whole day, daytime, and nighttime. The prevalence of severe diabetic retinopathy and atherosclerosis showed a decreasing trend among the three classes. CONCLUSIONS: The post-load insulin secretion patterns could well identify the heterogeneity of patients with T2DM in short- and long-term glycemic status and prevalence of complications, providing recommendations for the timely adjustment in treatment regimes of patients with T2DM and promotion of personalized treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Humans , Diabetes Mellitus, Type 2/complications , Insulin Secretion , C-Peptide , Blood Glucose , Insulin
7.
Diabetes Obes Metab ; 25(2): 479-490, 2023 02.
Article in English | MEDLINE | ID: mdl-36239189

ABSTRACT

AIM: To assess the effects of faecal microbial transplant (FMT) from lean people to subjects with obesity via colonoscopy. MATERIAL AND METHODS: In a double-blind, randomized controlled trial, subjects with a body mass index ≥ 35 kg/m2 and insulin resistance were randomized, in a 1:1 ratio in blocks of four, to either allogenic (from healthy lean donor; n = 15) or autologous FMT (their own stool; n = 13) delivered in the caecum and were followed for 3 months. The main outcome was homeostatic model assessment of insulin resistance (HOMA-IR) and secondary outcomes were glycated haemoglobin levels, lipid profile, weight, gut hormones, endotoxin, appetite measures, intestinal microbiome (IM), metagenome, serum/faecal metabolites, quality of life, anxiety and depression scores. RESULTS: In the allogenic versus autologous groups, HOMA-IR and clinical variables did not change significantly, but IM and metabolites changed favourably (P < 0.05): at 1 month, Coprococcus, Bifidobacterium, Bacteroides and Roseburia increased, and Streptococcus decreased; at 3 months, Bacteroides and Blautia increased. Several species also changed significantly. For metabolites, at 1 month, serum kynurenine decreased and faecal indole acetic acid and butenylcarnitine increased, while at 3 months, serum isoleucine, leucine, decenoylcarnitine and faecal phenylacetic acid decreased. Metagenomic pathway representations and network analyses assessing relationships with clinical variables, metabolites and IM were significantly enhanced in the allogenic versus autologous groups. LDL and appetite measures improved in the allogenic (P < 0.05) but not in the autologous group. CONCLUSIONS: Overall, in those with obeisty, allogenic FMT via colonoscopy induced favourable changes in IM, metabolites, pathway representations and networks even though other metabolic variables did not change. LDL and appetite variables may also benefit.


Subject(s)
Insulin Resistance , Obesity, Morbid , Humans , Quality of Life , Obesity/complications , Obesity/therapy , Colonoscopy , Double-Blind Method
8.
Cardiovasc Diabetol ; 21(1): 283, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36536433

ABSTRACT

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) usually have higher blood viscosity attributed to high blood glucose that can decrease blood supply to the pancreas. A mild increase in blood pressure (BP) has been reported as a potential compensatory response that can maintain blood perfusion in the islet. However, how BP influences beta-cell function in T2DM subjects remains inconsistent. This study aimed to examine the relationship between BP and beta-cell function in patients with T2DM under different HbA1c levels. METHODS: This is a cross-sectional study of 615 T2DM patients, whose clinical data were extracted from hospital medical records. Beta-cell function was assessed by insulin secretion-sensitivity index-2 (ISSI2). Multivariable linear regression analysis and restricted cubic splines (RCS) analysis were performed to identify the association between systolic BP (SBP) and ISSI2. Mediation analysis was performed to determine whether higher SBP could reduce blood glucose by enhancing beta-cell function. RESULTS: After adjustment of potential confounders, in participants with HbA1c ≥ 10%, the SBP between 140 to150 mmHg had the highest log ISSI2 (b = 0.227, 95% CI 0.053-0.402), an association specific to participants with < 1 year duration of diabetes. RCS analyses demonstrated an inverted U-shaped association between SBP and ISSI2 with the SBP at 144 mmHg corresponding to the best beta-cell function. This higher SBP was "paradoxically" associated with lower 2 h postprandial blood glucose (PBG) when SBP < 150 mmHg that was almost exclusively mediated by ISSI2 (mediating effect = - 0.043, 95%CI - 0.067 to - 0.018; mediating effect percentage = 94.7%, P < 0.01). SBP was however not associated with improvement in ISSI2 or 2 h PBG in participants with HbA1c < 10%. CONCLUSIONS: In early stage of diabetes, a slightly elevated SBP (140-150 mmHg) was transiently associated with better beta-cell function in T2DM patients with HbA1c ≥ 10% but not in those with HbA1c < 10%.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Blood Glucose/analysis , Blood Pressure , Glycated Hemoglobin , Cross-Sectional Studies
9.
Nat Commun ; 13(1): 6512, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316316

ABSTRACT

Enhancing pancreatic ß-cell secretion is a primary therapeutic target for type-2 diabetes (T2D). Syntaxin-2 (Stx2) has just been identified to be an inhibitory SNARE for insulin granule exocytosis, holding potential as a treatment for T2D, yet its molecular underpinnings remain unclear. We show that excessive Stx2 recruitment to raft-like granule docking sites at higher binding affinity than pro-fusion syntaxin-1A effectively competes for and inhibits fusogenic SNARE machineries. Depletion of Stx2 in human ß-cells improves insulin secretion by enhancing trans-SNARE complex assembly and cis-SNARE disassembly. Using a genetically-encoded reporter, glucose stimulation is shown to induce Stx2 flipping across the plasma membrane, which relieves its suppression of cytoplasmic fusogenic SNARE complexes to promote insulin secretion. Targeting the flipping efficiency of Stx2 profoundly modulates secretion, which could restore the impaired insulin secretion in diabetes. Here, we show that Stx2 acts to assist this precise tuning of insulin secretion in ß-cells, including in diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin , Humans , Syntaxin 1/genetics , Syntaxin 1/metabolism , Insulin/metabolism , Exocytosis/physiology , SNARE Proteins/metabolism , Cell Membrane/metabolism
10.
Biofabrication ; 14(4)2022 07 19.
Article in English | MEDLINE | ID: mdl-35793653

ABSTRACT

Precision-cut-tissues (PCTs), which preserve many aspects of a tissue's microenvironment, are typically imaged using conventional sample dishes and chambers. These can require large amounts of reagent and, when used for flow-through experiments, the shear forces applied on the tissues are often ill-defined. Their physical design also makes it difficult to image large volumes and repetitively image smaller regions of interest in the living slice. We report here on the design of a versatile microfluidic device capable of holding mouse or human pancreas PCTs for 3D fluorescence imaging using confocal and selective plane illumination microscopy (SPIM). Our design positions PCTs within a 5 × 5 mm × 140µm deep chamber fitted with 150µm tall channels to facilitate media exchange. Shear stress in the device is localized to small regions on the surface of the tissue and can be easily controlled. This design allows for media exchange at flowrates ∼10-fold lower than those required for conventional chambers. Finally, this design allows for imaging the same immunofluorescently labeled PCT with high resolution on a confocal and with large field of view on a SPIM, without adversely affecting image quality.


Subject(s)
Imaging, Three-Dimensional , Lab-On-A-Chip Devices , Animals , Humans , Imaging, Three-Dimensional/methods , Mice , Microscopy, Fluorescence/methods , Optical Imaging
11.
Methods Mol Biol ; 2473: 79-88, 2022.
Article in English | MEDLINE | ID: mdl-35819760

ABSTRACT

Due to the ultra-thin optical sectioning capability of exclusively illuminating space at the interface where total internal reflection occurs, the TIRF microscope has been indispensable for monitoring biological processes adjacent to the plasma membrane with excellent signal-to-noise ratio. Insulin-containing granules fuse with the plasma membrane to release contents within hundreds of milliseconds, which involves well-orchestrated assembly of SNARE complex and associated proteins. A video-rate multiple-color TIRF microscope offers the unique opportunity to visualize single secretory granule docking and fusion dynamics and can also map its regulators with high spatiotemporal resolution. Here, we describe the basic principles and practical implementation of a fast dual-color TIRF microscope, detailing a how-to guide on imaging and analysis of insulin granule dynamics in human ß-cells.


Subject(s)
Insulin-Secreting Cells , Insulin , Cytoplasmic Granules/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Microscopy, Fluorescence/methods , Secretory Vesicles/metabolism
12.
STAR Protoc ; 3(2): 101347, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35509972

ABSTRACT

Adjacent membrane receptors can show different cellular responses to ligand stimulation. Here, we describe a super-resolution microscopy imaging protocol for tracking the dynamics of two different membrane-bound receptors in single cells. We describe the transfection protocol by electroporation. We detail the imaging procedure for receptors in a single cell. We then outline the data analysis pipeline. We have applied this protocol to imaging of endocytosis of the LOX-1 and AT1 in CHO-K1 cells, but the protocol can be applied to a variety of membrane receptors in other cell lines. For complete details on the use and execution of this protocol, please refer to Takahashi et al. (2021).


Subject(s)
Endocytosis , Microscopy , Cell Line , Microscopy/methods
13.
Endocrine ; 76(2): 312-323, 2022 05.
Article in English | MEDLINE | ID: mdl-35239125

ABSTRACT

PURPOSE: To investigate whether non-high-density lipoprotein cholesterol (Non-HDL-C), remnant cholesterol (RC), and the ratios of lipid indexes are more closely associated with early progression of kidney dysfunction than traditional lipid indexes; and to explore the association between changes in serum lipids during follow-up and annual decline rate in estimated glomerular filtration rate (eGFR). METHODS: In this prospective cohort study, 3909 participants with normal eGFR and age≥40 years at baseline were followed for 3.3 years. Progression of kidney dysfunction was assessed as annual decline rate in eGFR. Spearman correlation analysis, linear correlation models, and multiple logistic regression were used to assess the associations between lipid indexes at baseline/both baseline and follow-up and the annual decline rate in eGFR. RESULTS: Compared with ΔLDL-C (ß = 0.412), other lipid indexes such as ΔLDL-C/HDL-C (ß = 0.565), ΔTC/HDL-C (ß = 0.448), and ΔNon-HDL-C/HDL-C (ß = 0.448) were more closely associated with annual decline rate in eGFR. High TG/HDL-C (OR = 1.699(1.177-2.454)) and TC/HDL-C (OR = 1.567(1.095-2.243)) at baseline, as well as high TC/HDL-C (OR = 1.478 (1.003-2.177)) and TG/HDL-C (OR = 1.53(1.044-2.244)) at both baseline and follow-up were associated with the annual decline rate in eGFR <0.5. High Non-HDL-C (OR = 1.633(1.025-2.602)) and LCI (OR = 1.631(1.010-2.416)) at both baseline and follow-up resulted in a 63% increase in risk of annual decline rate in eGFR >1. CONCLUSION: High Non-HDL-C, RC and the ratios of lipid indexes were more closely associated with early progression of kidney injury than the increase of traditional lipid indexes. These lipid indexes should be monitored, even in participants with normal traditional serum lipid levels.


Subject(s)
Renal Insufficiency , Adult , Cholesterol , Cholesterol, HDL , Female , Glomerular Filtration Rate , Humans , Kidney , Male , Prospective Studies , Risk Factors , Triglycerides
14.
Cell Mol Gastroenterol Hepatol ; 13(2): 599-622, 2022.
Article in English | MEDLINE | ID: mdl-34610499

ABSTRACT

BACKGROUND: Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS: We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS: Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS: The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.


Subject(s)
Pancreas , Pancreatitis , Acinar Cells/metabolism , Animals , Autophagosomes , Autophagy , Mice , Pancreatitis/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/pharmacology
15.
Front Med (Lausanne) ; 8: 732413, 2021.
Article in English | MEDLINE | ID: mdl-34746175

ABSTRACT

Introduction: Glomerular hyperfiltration (GHF) is an early kidney injury. We investigated whether GHF is associated with arterial stiffness expressed by increase of brachial-ankle pulse wave velocity (baPWV) and pulse pressure (PP), and whether the coexistence of GHF and abnormal metabolism increases the risk of arterial stiffness. Methods: In this prospective cohort study, 2,133 non-chronic kidney disease (CKD) participants aged ≥40 years were followed for a mean period of 3.3 years. The extent of arterial stiffness was expressed by measures of baPWV and PP. GHF was defined as eGFR exceeding the age- and sex-specific 90th percentile. Multivariate logistic regression models were used to assess the association between GHF/abnormal metabolism and increased baPWV/PP. The interaction indexes of GHF and abnormal metabolism on arterial stiffness were calculated based on the OR in a multivariate logistic regression model. Results: GHF alone was not associated with increased baPWV or PP in all participants in this study. However, when GHF coexisted with abnormal metabolism, the risk of increased PP increased 3.23-fold [OR = 3.23(1.47-7.13)] compared with participants with normal filtration and normal metabolism, in which the interaction accounted for 55.1% of the total effect and 79.8% of the effect from GHF and abnormal metabolism. After subtracting the independent effects of GHF and abnormal metabolism, their combined effect still resulted in a 1.78-fold increase in PP. Conclusion: GHF could interact with abnormal metabolism to significantly enhance arterial stiffness. Since abnormal metabolism commonly exists in the general population, even slight changes in renal function should be distinguished to prevent arterial stiffness risk.

16.
Front Cardiovasc Med ; 8: 735679, 2021.
Article in English | MEDLINE | ID: mdl-34621801

ABSTRACT

Background: Both baseline blood pressure (BP) and cumulative BP have been used to estimate cardiovascular event (CVE) risk of higher BP, but which one is more reliable for recommendation to routine clinical practice is unclear. Methods: In this prospective study, conducted in the Kailuan community of Tanshan City, China, a total of 95,702 participants free of CVEs at baseline (2006-2007) were included and followed up until 2017. Time-weighted cumulative BP that expresses the extent of cumulative BP exposure is defined as the sum of the mean of two consecutive systolic or diastolic BP times the interval between the two determinations, then normalized by the total follow-up duration. Incident CVEs during 2006-2017 were confirmed by review of medical records. We performed a competing risk regression analysis to assess CVE risk of the different durations of higher BP exposure. ROC analysis was performed to assess the predictive value of higher BP on CVE occurrence. Results: We found that when the risk of higher BP on CVE occurrence was estimated based on time-weighted cumulative BP, the hazard ratios (HRs) increased with the increase in duration of higher BP exposure in each of the four BP groups: <120/<80, 120-129/<80, 130-139/80-89, and ≥140/≥90 mmHg; this time trend also occurred across the four different BP groups, with the higher BP group exhibiting CVE risk earlier during the follow-up. These results were confirmed by the same analysis performed on participants without baseline hypertension. However, such reasonable time trends did not occur when a single baseline BP was used as the primary estimation. We also demonstrated that the predictive values of baseline systolic and diastolic BP that predict CVE occurrence were only 0.6-3.2 and 0.2-3.1% lower, respectively, than those of cumulative BP combined with baseline BP during follow-up. Conclusions: Baseline BP remains a useful indicator for predicting future occurrence of CVEs. Nevertheless, time-weighted cumulative BP could more reliably estimate the CVE risk of higher BP exposure than baseline BP.

17.
J Clin Invest ; 131(15)2021 08 02.
Article in English | MEDLINE | ID: mdl-34128834

ABSTRACT

Disordered lysosomal/autophagy pathways initiate and drive pancreatitis, but the underlying mechanisms and links to disease pathology are poorly understood. Here, we show that the mannose-6-phosphate (M6P) pathway of hydrolase delivery to lysosomes critically regulates pancreatic acinar cell cholesterol metabolism. Ablation of the Gnptab gene encoding a key enzyme in the M6P pathway disrupted acinar cell cholesterol turnover, causing accumulation of nonesterified cholesterol in lysosomes/autolysosomes, its depletion in the plasma membrane, and upregulation of cholesterol synthesis and uptake. We found similar dysregulation of acinar cell cholesterol, and a decrease in GNPTAB levels, in both WT experimental pancreatitis and human disease. The mechanisms mediating pancreatic cholesterol dyshomeostasis in Gnptab-/- and experimental models involve a disordered endolysosomal system, resulting in impaired cholesterol transport through lysosomes and blockage of autophagic flux. By contrast, in Gnptab-/- liver the endolysosomal system and cholesterol homeostasis were largely unaffected. Gnptab-/- mice developed spontaneous pancreatitis. Normalization of cholesterol metabolism by pharmacologic means alleviated responses of experimental pancreatitis, particularly trypsinogen activation, the disease hallmark. The results reveal the essential role of the M6P pathway in maintaining exocrine pancreas homeostasis and function, and implicate cholesterol disordering in the pathogenesis of pancreatitis.


Subject(s)
Acinar Cells/metabolism , Cholesterol/metabolism , Mannosephosphates/metabolism , Pancreas, Exocrine/metabolism , Pancreatitis/metabolism , Acinar Cells/pathology , Animals , Cholesterol/genetics , Disease Models, Animal , Humans , Mannosephosphates/genetics , Mice , Mice, Knockout , Pancreas, Exocrine/pathology , Pancreatitis/pathology , Transferases (Other Substituted Phosphate Groups)/deficiency , Transferases (Other Substituted Phosphate Groups)/metabolism
18.
iScience ; 24(2): 102076, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33659870

ABSTRACT

Arrestin-dependent activation of a G-protein-coupled receptor (GPCR) triggers endocytotic internalization of the receptor complex. We analyzed the interaction between the pattern recognition receptor (PRR) lectin-like oxidized low-density lipoprotein (oxLDL) receptor (LOX-1) and the GPCR angiotensin II type 1 receptor (AT1) to report a hitherto unidentified mechanism whereby internalization of the GPCR mediates cellular endocytosis of the PRR ligand. Using genetically modified Chinese hamster ovary cells, we found that oxLDL activates Gαi but not the Gαq pathway of AT1 in the presence of LOX-1. Endocytosis of the oxLDL-LOX-1 complex through the AT1-ß-arrestin pathway was demonstrated by real-time imaging of the membrane dynamics of LOX-1 and visualization of endocytosis of oxLDL. Finally, this endocytotic pathway involving GPCR kinases (GRKs), ß-arrestin, and clathrin is relevant in accumulating oxLDL in human vascular endothelial cells. Together, our findings indicate that oxLDL activates selective G proteins and ß-arrestin-dependent internalization of AT1, whereby the oxLDL-LOX-1 complex undergoes endocytosis.

19.
Autophagy ; 17(10): 3068-3081, 2021 10.
Article in English | MEDLINE | ID: mdl-33213278

ABSTRACT

Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury. SNAP23 depletion was by knockdown (SNAP23-KD) effected by adenovirus-shRNA (Ad-SNAP23-shRNA/mCherry) treatment of rodent and human pancreatic slices and in vivo by infusion into rat pancreatic duct. In vitro pancreatitis induction by supraphysiological cholecystokinin (CCK) or ethanol plus low-dose CCK were used to assess SNAP23-KD effects on exocytosis and autophagy. Pancreatitis stimuli resulted in SNAP23 translocation from its native location at the plasma membrane to autophagosomes, where SNAP23 would bind and regulate STX17 (syntaxin17) SNARE complex-mediated autophagosome-lysosome fusion. This SNAP23 relocation was attributed to IKBKB/IKKß-mediated SNAP23 phosphorylation at Ser95 Ser120 in rat and Ser120 in human, which was blocked by IKBKB/IKKß inhibitors, and confirmed by the inability of IKBKB/IKKß phosphorylation-disabled SNAP23 mutant (Ser95A Ser120A) to bind STX17 SNARE complex. SNAP23-KD impaired the assembly of STX4-driven basolateral exocytotic SNARE complex and STX17-driven SNARE complex, causing respective reduction of basolateral exocytosis of ZGs and autolysosome formation, with consequent reduction in trypsinogen activation in both compartments. Consequently, pancreatic SNAP23-KD rats were protected from caerulein and alcoholic pancreatitis. This study revealed the roles of SNAP23 in mediating pathological basolateral exocytosis and IKBKB/IKKß's involvement in autolysosome formation, both where trypsinogen activation would occur to cause pancreatitis. SNAP23 is a strong candidate to target for pancreatitis therapy.Abbreviations: AL: autolysosome; AP: acute pancreatitis; AV: autophagic vacuole; CCK: cholecystokinin; IKBKB/IKKß: inhibitor of nuclear factor kappa B kinase subunit beta; SNAP23: synaptosome associated protein 23; SNARE: soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; STX: syntaxin; TAP: trypsinogen activation peptide; VAMP: vesicle associated membrane protein; ZG: zymogen granule.


Subject(s)
Pancreatitis , Qb-SNARE Proteins , Qc-SNARE Proteins , Acute Disease , Animals , Autophagy , Exocytosis , Humans , Lysosomes , Pancreas , Pancreatitis/genetics , Pancreatitis/prevention & control , Qb-SNARE Proteins/genetics , Qc-SNARE Proteins/genetics , Rats , Trypsin/pharmacology , Vesicular Transport Proteins
20.
Lipids Health Dis ; 19(1): 226, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33059672

ABSTRACT

BACKGROUND: Prediabetes has become a pandemic. This study aimed to identify a better predictor for the incidence of prediabetes, which we hypothesize to be the triglyceride-glucose (TyG) index, a simplified insulin resistance index. We compared its predictive value with the other common risk factors of prediabetes. METHODS: The participants of this analysis were derived from the Risk Evaluation of cAncers in Chinese diabeTic Individuals: a lONgitudinal (REACTION) study. A total of 4543 participants without initial prediabetes or diabetes were followed up for 3.25 years. Using multivariate logistic regression model, the associations between baseline obesity, lipid profiles and non-insulin-based insulin resistance indices with the incidence of prediabetes were analyzed. To assess which is better predictor for the incidence of prediabetes, the area under curves (AUCs) calculated from the receiver operating characteristic curve analyses were used to evaluate and compare with the predictive value of the different indices. RESULTS: During the 3.25 years, 1071 out of the 4543 participants developed prediabetes. Using the logistic regression analysis adjusted for some potential confounders, the risk of incidence of prediabetes increased 1.38 (1.28-1.48) fold for each 1-SD increment of TyG index. The predictive ability (assessed by AUCs) of TyG index for predicting prediabetes was 0.60 (0.58-0.62), which was superior to the indices of obesity, lipid profiles and other non-insulin-based insulin resistance indices. Although the predictive ability of the TyG index was overall similar to fasting plasma glucose (FPG) (P = 0.4340), TyG index trended higher than FPG in females (0.62 (0.59-0.64) vs. 0.59 (0.57-0.61), P = 0.0872) and obese subjects (0.59 (0.57-0.62) vs. 0.57 (0.54-0.59), P = 0.1313). TyG index had superior predictive ability for the prediabetic phenotype with isolated impaired glucose tolerance compared with FPG (P <  0.05) and other indices. Furthermore, TyG index significantly improved the C statistic (0.62 (0.60-0.64)), integrated discrimination improvement (1.89% (1.44-2.33%)) and net reclassification index (28.76% (21.84-35.67%)) of conventional model in predicting prediabetes than other indices. CONCLUSIONS: TyG could be a potential predictor to identify the high risk individuals of prediabetes.


Subject(s)
Blood Glucose/analysis , Prediabetic State/blood , Triglycerides/blood , China/epidemiology , Fasting/blood , Female , Humans , Incidence , Male , Middle Aged , Obesity/blood , Prediabetic State/epidemiology , Prospective Studies , ROC Curve , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...