Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 361: 385-401, 2023 09.
Article in English | MEDLINE | ID: mdl-37562555

ABSTRACT

Malaria is a global parasitic infection that leads to substantial illness and death. The most commonly-used drugs for treatment of malaria vivax are primaquine and chloroquine, but they have limitations, such as poor adherence due to frequent oral administration and gastrointestinal side effects. To overcome these limitations, we have developed nano-sized solid dispersion-based dissolving microarray patches (MAPs) for the intradermal delivery of these drugs. In vitro testing showed that these systems can deliver to skin and receiver compartment up to ≈60% of the payload for CQ-based dissolving MAPs and a total of ≈42% of drug loading for PQ-based dissolving MAPs. MAPs also displayed acceptable biocompatibility in cell tests. Pharmacokinetic studies in rats showed that dissolving MAPs could deliver sustained plasma levels of both PQ and CQ for over 7 days. Efficacy studies in a murine model for malaria showed that mice treated with PQ-MAPs and CQ-MAPs had reduced parasitaemia by up to 99.2%. This pharmaceutical approach may revolutionise malaria vivax treatment, especially in developing countries where the disease is endemic. The development of these dissolving MAPs may overcome issues associated with current pharmacotherapy and improve patient outcomes.


Subject(s)
Antimalarials , Malaria, Vivax , Animals , Mice , Rats , Primaquine/therapeutic use , Primaquine/pharmacology , Chloroquine , Plasmodium vivax , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology
2.
Antimicrob Agents Chemother ; 67(4): e0146522, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36856421

ABSTRACT

Safe and effective malaria transmission-blocking chemotherapeutics would allow a community-level approach to malaria control and eradication efforts by targeting the mosquito sexual stage of the parasite life cycle. However, only a single drug, primaquine, is currently approved for use in reducing transmission, and drug toxicity limits its widespread implementation. To address this limitation in antimalarial chemotherapeutics, we used a recently developed transgenic Plasmodium berghei line, Ookluc, to perform a series of high-throughput in vitro screens for compounds that inhibit parasite fertilization, the initial step of parasite development within the mosquito. Screens of antimalarial compounds, approved drug collections, and drug-like molecule libraries identified 185 compounds that inhibit parasite maturation to the zygote form. Seven compounds were further characterized to block gametocyte activation or to be cytotoxic to formed zygotes. These were further validated in mosquito membrane-feeding assays using Plasmodium falciparum and P. vivax. This work demonstrates that high-throughput screens using the Ookluc line can identify compounds that are active against the two most relevant human Plasmodium species and provides a list of compounds that can be explored for the development of new antimalarials to block transmission.


Subject(s)
Antimalarials , Culicidae , Malaria, Falciparum , Malaria, Vivax , Malaria , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium berghei , High-Throughput Screening Assays , Malaria/prevention & control , Primaquine/therapeutic use , Plasmodium falciparum , Malaria, Vivax/drug therapy , Malaria, Falciparum/drug therapy
3.
Article in English | MEDLINE | ID: mdl-30181368

ABSTRACT

Malaria remains an important parasitic disease with a large morbidity and mortality burden. Plasmodium transmission-blocking (TB) compounds are essential for achieving malaria elimination efforts. Recent efforts to develop high-throughput screening (HTS) methods to identify compounds that inhibit or kill gametocytes, the Plasmodium sexual stage infectious to mosquitoes, have yielded insight into new TB compounds. However, the activities of these compounds against gametes, formed in the first minutes of mosquito infection, are typically not assessed, unless screened in a standard membrane feeding assay, a labor-intensive assay. We demonstrate here the generation of a Plasmodium model for drug screens against gametes and fertilization. The new P. berghei line, named Ookluc, was genetically and pharmacologically validated and scalable for HTS. Screening the Pathogen Box from the Medicines for Malaria Venture using the new model identified promising TB compounds. The use of Ookluc in different libraries of compounds may aid in the identification of transmission-blocking drugs not assessed in screens against asexual stages or gametocytes.


Subject(s)
Antimalarials/pharmacology , Malaria/drug therapy , Plasmodium berghei/drug effects , Animals , Culicidae/parasitology , Luciferases/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...