Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(1): e14220, 2024.
Article in English | MEDLINE | ID: mdl-38356368

ABSTRACT

Myrtaceae species are abundant in tropical Atlantic rainforests, but 41% of the 5500 species of this family are of extreme conservation concern. Eugenia astringens and E. uniflora are native Brazilian Myrtaceae species that occur in the same habitats and produce desiccation-sensitive (DS) seeds. We hypothesized that their seed desiccation-sensitivity degree is associated with specific metabolic signatures. To test it, we analyzed the germination and metabolic profiles of fresh and desiccated seeds. The water content (WC) at which at least half of the seeds survived desiccation was lower in E. astringens (0.17 g H2 O g-1 DW) than in E. uniflora (0.41 g H2 O g-1 DW). We identified 103 annotated metabolites from 3261 peaks in both species, which differed in their relative contents between E. astringens and E. uniflora seeds. The main differences in seed metabolic profiles include several protective molecules in the group of carbohydrates and organic acids and amino acid contents. The relative contents of monosaccharides and disaccharides, malic and quinic acids, amino acids and saturated fatty acids may have taken part in the distinct DS behaviour of E. astringens and E. uniflora seeds. Our study provides evidence of the relationship between desiccation sensitivity, seed viability and metabolic profile of tropical seeds by comparing two closely related Eugenia species with different DS degrees.


Subject(s)
Eugenia , Myrtaceae , Desiccation , Germination , Seeds , Amino Acids , Metabolome
2.
Front Plant Sci ; 14: 1272822, 2023.
Article in English | MEDLINE | ID: mdl-37841629

ABSTRACT

Establishment of the seedlings is a crucial stage of the plant life cycle. The success of this process is essential for the growth of the mature plant. In Nature, when seeds germinate under the soil, seedlings follow a dark-specific program called skotomorphogenesis, which is characterized by small, non-green cotyledons, long hypocotyl, and an apical hook-protecting meristematic cells. These developmental structures are required for the seedlings to emerge quickly and safely through the soil and gain autotrophy before the complete depletion of seed resources. Due to the lack of photosynthesis during this period, the seed nutrient stocks are the primary energy source for seedling development. The energy is provided by the bioenergetic organelles, mitochondria, and etioplast (plastid in the dark), to the cell in the form of ATP through mitochondrial respiration and etio-respiration processes, respectively. Recent studies suggest that the limitation of the plastidial or mitochondrial gene expression induces a drastic reprogramming of the seedling morphology in the dark. Here, we discuss the dark signaling mechanisms involved during a regular skotomorphogenesis and how the dysfunction of the bioenergetic organelles is perceived by the nucleus leading to developmental changes. We also describe the probable involvement of several plastid retrograde pathways and the interconnection between plastid and mitochondria during seedling development. Understanding the integration mechanisms of organellar signals in the developmental program of seedlings can be utilized in the future for better emergence of crops through the soil.

3.
Plant Environ Interact ; 4(5): 229-257, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37822730

ABSTRACT

Rice is more vulnerable to drought than maize, wheat, and sorghum because its water requirements remain high throughout the rice life cycle. The effects of drought vary depending on the timing, intensity, and duration of the events, as well as on the rice genotype and developmental stage. It can affect all levels of organization, from genes to the cells, tissues, and/or organs. In this study, a moderate water deficit was applied to two contrasting rice genotypes, IAC 25 and CIRAD 409, during their reproductive stage. Multi-level transcriptomic, metabolomic, physiological, and morphological analyses were performed to investigate the complex traits involved in their response to drought. Weighted gene network correlation analysis was used to identify the specific molecular mechanisms regulated by each genotype, and the correlations between gene networks and phenotypic traits. A holistic analysis of all the data provided a deeper understanding of the specific mechanisms regulated by each genotype, and enabled the identification of gene markers. Under non-limiting water conditions, CIRAD 409 had a denser shoot, but shoot growth was slower despite better photosynthetic performance. Under water deficit, CIRAD 409 was weakly affected regardless of the plant level analyzed. In contrast, IAC 25 had reduced growth and reproductive development. It regulated transcriptomic and metabolic activities at a high level, and activated a complex gene regulatory network involved in growth-limiting processes. By comparing two contrasting genotypes, the present study identified the regulation of some fundamental processes and gene markers, that drive rice development, and influence its response to water deficit, in particular, the importance of the biosynthetic and regulatory pathways for cell wall metabolism. These key processes determine the biological and mechanical properties of the cell wall and thus influence plant development, organ expansion, and turgor maintenance under water deficit. Our results also question the genericity of the antagonism between morphogenesis and organogenesis observed in the two genotypes.

4.
Toxicology ; 492: 153550, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37209942

ABSTRACT

Organ-on-chip technology is a promising in vitro approach recapitulating human physiology for the study of responses to drug exposure. Organ-on-chip cell cultures have paved new grounds for testing and understanding metabolic dose-responses when evaluating pharmaceutical and environmental toxicity. Here, we present a metabolomic investigation of a coculture of liver sinusoidal endothelial cells (LSECs, SK-HEP-1) with hepatocytes (HepG2/C3a) using advanced organ-on-chip technology. To reproduce the physiology of the sinusoidal barrier, LSECs were separated from hepatocytes by a membrane (culture insert integrated organ-on-chip platform). The tissues were exposed to acetaminophen (APAP), an analgesic drug widely used as a xenobiotic model in liver and HepG2/C3a studies. The differences between the SK-HEP-1, HepG2/C3a monocultures and SK-HEP-1/HepG2/C3a cocultures, treated or not with APAP, were identified from metabolomic profiles using supervised multivariate analysis. The pathway enrichment coupled with metabolite analysis of the corresponding metabolic fingerprints contributed to extracting the specificity of each type of culture and condition. In addition, we analysed the responses to APAP treatment by mapping the signatures with significant modulation of the biological processes of the SK-HEP-1 APAP, HepG2/C3a APAP and SK-HEP-1/HepG2/C3a APAP conditions. Furthermore, our model shows how the presence of the LSECs barrier and APAP first pass can modify the metabolism of HepG2/C3a. Altogether, this study demonstrates the potential of a "metabolomic-on-chip" strategy for pharmaco-metabolomic applications predicting individual response to drugs.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Humans , Acetaminophen/toxicity , Endothelial Cells/metabolism , Hepatocytes/metabolism , Liver/metabolism , Technology , Hep G2 Cells , Chemical and Drug Induced Liver Injury/metabolism
5.
Front Cell Dev Biol ; 11: 1129009, 2023.
Article in English | MEDLINE | ID: mdl-36968208

ABSTRACT

ATP wasting is recognized as an efficient strategy to enhance metabolic activity and productivity of specific metabolites in several microorganisms. However, such strategy has been rarely implemented in Streptomyces species whereas antibiotic production by members of this genus is known to be triggered in condition of phosphate limitation that is correlated with a low ATP content. In consequence, to assess the effects of ATP spilling on the primary and specialized metabolisms of Streptomyces, the gene encoding the small synthetic protein DX, that has high affinity for ATP and dephosphorylates ATP into ADP, was cloned in the integrative vector pOSV10 under the control of the strong ErmE promoter. This construct and the empty vector were introduced into the species Streptomyces albogriseolus/viridodiastaticus yielding A37 and A36, respectively. A37 yielded higher biomass than A36 indicating that the DX-mediated ATP degradation resulted into a stimulation of A37 metabolism, consistently with what was reported in other microorganisms. The comparative analysis of the metabolomes of A36 and A37 revealed that A37 had a lower content in glycolytic and Tricarboxylic Acid Cycle intermediates as well as in amino acids than A36, these metabolites being consumed for biomass generation in A37. In contrast, the abundance of other molecules indicative either of energetic stress (ADP, AMP, UMP, ornithine and thymine), of activation (NAD and threonic acid) or inhibition (citramalic acid, fatty acids, TAG and L-alanine) of the oxidative metabolism, was higher in A37 than in A36. Furthermore, hydroxyl-pyrimidine derivatives and polycyclic aromatic polyketide antibiotics belonging to the angucycline class and thought to have a negative impact on respiration were also more abundantly produced by A37 than by A36. This comparative analysis thus revealed the occurrence in A37 of antagonistic metabolic strategies, namely, activation or slowing down of oxidative metabolism and respiration, to maintain the cellular energetic balance. This study thus demonstrated that DX constitutes an efficient biotechnological tool to enhance the expression of the specialized metabolic pathways present in the Streptomyces genomes that may include cryptic pathways. Its use thus might lead to the discovery of novel bioactive molecules potentially useful to human health.

6.
Plant Physiol ; 192(1): 356-369, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36722179

ABSTRACT

Manganese (Mn) is an essential metal for plant growth. The most important Mn-containing enzyme is the Mn4CaO5 cluster that catalyzes water oxidation in photosystem II (PSII). Mn deficiency primarily affects photosynthesis, whereas Mn excess is generally toxic. Here, we studied Mn excess and deficiency in the liverwort Marchantia polymorpha, an emerging model ideally suited for analysis of metal stress since it accumulates rapidly toxic substances due to the absence of well-developed vascular and radicular systems and a reduced cuticle. We established growth conditions for Mn excess and deficiency and analyzed the metal content in thalli and isolated chloroplasts. In vivo super-resolution fluorescence microscopy and transmission electron microscopy revealed changes in the organization of the thylakoid membrane under Mn excess and deficiency. Both Mn excess and Mn deficiency increased the stacking of the thylakoid membrane. We investigated photosynthetic performance by measuring chlorophyll fluorescence at room temperature and 77 K, measuring P700 absorbance, and studying the susceptibility of thalli to photoinhibition. Nonoptimal Mn concentrations changed the ratio of PSI to PSII. Upon Mn deficiency, higher non-photochemical quenching was observed, electron donation to PSI was favored, and PSII was less susceptible to photoinhibition. Mn deficiency seemed to favor cyclic electron flow around PSI, thereby protecting PSII in high light. The results presented here suggest an important role of Mn in the organization of the thylakoid membrane and photosynthetic electron transport.


Subject(s)
Manganese , Marchantia , Chloroplasts , Photosynthesis , Thylakoids , Electron Transport , Photosystem II Protein Complex , Chlorophyll , Photosystem I Protein Complex , Light
7.
Plant J ; 114(2): 293-309, 2023 04.
Article in English | MEDLINE | ID: mdl-36748183

ABSTRACT

When covered by a layer of soil, seedling development follows a dark-specific program (skotomorphogenesis). In the dark, seedlings consist of small, non-green cotyledons, a long hypocotyl, and an apical hook to protect meristematic cells. We recently highlighted the role played by mitochondria in the high energy-consuming reprogramming of Arabidopsis skotomorphogenesis. Here, the role played by plastids, another energy-supplying organelle, in skotomorphogenesis is investigated. This study was conducted in dark conditions to exclude light signals so as to better focus on those produced by plastids. It was found that limitation of plastid gene expression (PGE) induced an exaggerated apical hook bending. Inhibition of PGE was obtained at the levels of transcription and translation using the antibiotics rifampicin (RIF) and spectinomycin, respectively, as well as plastid RPOTp RNA polymerase mutants. RIF-treated seedlings also showed expression induction of marker nuclear genes for mitochondrial stress, perturbation of mitochondrial metabolism, increased ROS levels, and an augmented capacity of oxygen consumption by mitochondrial alternative oxidases (AOXs). AOXs act to prevent overreduction of the mitochondrial electron transport chain. Previously, we reported that AOX1A, the main AOX isoform, is a key component in the developmental response to mitochondrial respiration deficiency. In this work, we suggest the involvement of AOX1A in the response to PGE dysfunction and propose the importance of signaling between plastids and mitochondria. Finally, it was found that seedling architecture reprogramming in response to RIF was independent of canonical organelle retrograde pathways and the ethylene signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Seedlings/metabolism , Hypocotyl , Chloroplasts/metabolism , Gene Expression , Gene Expression Regulation, Plant , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
8.
Metabolites ; 12(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36557308

ABSTRACT

Diabetes mellitus (DM) is a complex disease with high prevalence of comorbidity and mortality. DM is predicted to reach more than 700 million people by 2045. In recent years, several advanced in vitro models and analytical tools were developed to investigate the pancreatic tissue response to pathological situations and identify therapeutic solutions. Of all the in vitro promising models, cell culture in microfluidic biochip allows the reproduction of in-vivo-like micro-environments. Here, we cultured rat islets of Langerhans using dynamic cultures in microfluidic biochips. The dynamic cultures were compared to static islets cultures in Petri. The islets' exometabolomic signatures, with and without GLP1 and isradipine treatments, were characterized by GC-MS. Compared to Petri, biochip culture contributes to maintaining high secretions of insulin, C-peptide and glucagon. The exometabolomic profiling revealed 22 and 18 metabolites differentially expressed between Petri and biochip on Day 3 and 5. These metabolites illustrated the increase in lipid metabolism, the perturbation of the pentose phosphate pathway and the TCA cycle in biochip. After drug stimulations, the exometabolome of biochip culture appeared more perturbed than the Petri exometabolome. The GLP1 contributed to the increase in the levels of glycolysis, pentose phosphate and glutathione pathways intermediates, whereas isradipine led to reduced levels of lipids and carbohydrates.

9.
Mol Omics ; 18(8): 791-804, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35916309

ABSTRACT

Functional differentiation of pancreatic like tissue from human induced pluripotent stem cells is one of the emerging strategies to achieve an in vitro pancreas model. Here, we propose a protocol to cultivate hiPSC-derived ß-like-cells coupling spheroids and microfluidic technologies to improve the pancreatic lineage maturation. The protocol led to the development of spheroids producing the C-peptide and containing cells positive to insulin and glucagon. In order to further characterize the cellular and molecular profiles, we performed full transcriptomics and metabolomics analysis. The omics analysis confirmed the activation of key transcription factors together with the upregulation of genes and the presence of metabolites involved in functional pancreatic tissue development, extracellular matrix remodeling, lipid and fatty acid metabolism, and endocrine hormone signaling. When compared to static 3D honeycomb cultures, dynamic 3D biochip cultures contributed to increase specifically the activity of the HIF transcription factor, to activate the calcium activated cation channels, to enrich the glucagon and insulin pathways and glycolysis/gluconeogenesis, and to increase the secretion of serotonin, glycerol and glycerol-3-phosphate at the metabolic levels.


Subject(s)
Induced Pluripotent Stem Cells , C-Peptide/metabolism , Calcium/metabolism , Cell Differentiation/genetics , Fatty Acids/metabolism , Glucagon/metabolism , Glycerol/metabolism , Humans , Lab-On-A-Chip Devices , Lipids , Metabolome , Pancreas/metabolism , Phosphates/metabolism , Serotonin/metabolism , Transcription Factors/metabolism , Transcriptome
11.
Plant Physiol ; 188(2): 1229-1247, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34865141

ABSTRACT

In Angiosperms, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis (Arabidopsis thaliana), among the genes encoding tonoplastic transporters, SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER 16 (SWEET16) and SWEET17 expression has been previously detected in the vascular system. Here, using a reverse genetics approach, we propose that sugar exchanges at the tonoplast, regulated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the accumulation of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by Fourier-transformed infrared spectroscopy in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development partially depends on the exchange of hexoses at the tonoplast of xylem-forming cells.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Hexoses/metabolism , Inflorescence/growth & development , Inflorescence/genetics , Xylem/growth & development , Xylem/genetics , Arabidopsis/metabolism , Biological Transport/genetics , Genetic Variation , Genotype , Inflorescence/metabolism , Mutation , Vacuoles/physiology , Xylem/metabolism
12.
Hortic Res ; 8(1): 206, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34593779

ABSTRACT

Sclareol, an antifungal specialized metabolite produced by clary sage, Salvia sclarea, is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide. Sclareol is mainly produced in clary sage flower calyces; however, the cellular localization of the sclareol biosynthesis remains unknown. To elucidate the site of sclareol biosynthesis, we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging (LDI-FTICR-MSI) and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes (GTs). We showed that sclareol specifically accumulates in GTs' gland cells in which sclareol biosynthesis genes are strongly expressed. We next isolated a glabrous beardless mutant and demonstrate that more than 90% of the sclareol is produced by the large capitate GTs. Feeding experiments, using 1-13C-glucose, and specific enzyme inhibitors further revealed that the methylerythritol-phosphate (MEP) biosynthetic pathway is the main source of isopentenyl diphosphate (IPP) precursor used for the biosynthesis of sclareol. Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.

13.
Differentiation ; 120: 28-35, 2021.
Article in English | MEDLINE | ID: mdl-34229994

ABSTRACT

The liver is a complex organ composed of several cell types organized hierarchically. Among these, liver sinusoidal endothelial cells (LSECs) are specialized vascular cells known to interact with hepatocytes and hepatic stellate cells (HSCs), and to be involved in the regulation of important hepatic processes in healthy and pathological situations. Protocols for the differentiation of LSECs from human induced pluripotent stem cells, hiPSCs, have been proposed and in-depth analysis by transcriptomic profiling of those cells has been performed. In the present work, an extended analysis of those cells in terms of proteome and metabolome has been implemented. The proteomic analysis confirmed the expression of important endothelial markers and pathways. Among them, the expression of patterns typical of LSECs such as PECAM1, VWF, LYVE1, STAB1 (endothelial markers), CDH13, CDH5, CLDN5, ICAM1, MCAM-CD146, ICAM2, ESAM (endothelial cytoskeleton), NOSTRIN, NOS3 (Nitric Oxide endothelial ROS), ESM1, ENG, MMRN2, THBS1, ANGPT2 (angiogenesis), CD93, MRC1 (mannose receptor), CLEC14A (C-type lectin), CD40 (antigen), and ERG (transcription factor) was highlighted. Besides, the pathway analysis revealed the enrichment of the endocytosis, Toll-like receptor, Nod-like receptor, Wnt, Apelin, VEGF, cGMP-PCK, and PPAR related signaling pathways. Other important pathways such as vasopressin regulated water reabsorption, fluid shear stress, relaxin signaling, and renin secretion were also highlighted. At confluence, the metabolome profile appeared consistent with quiescent endothelial cell patterns. The integration of both proteome and metabolome datasets revealed a switch from fatty acid synthesis in undifferentiated hiPSCs to a fatty oxidation in LSECs and activation of the pentose phosphate pathway and polyamine metabolism in hiPSCs-derived LSECs. In conclusion, the comparison between the signature of LSECs differentiated following the protocol described in this work, and data found in the literature confirmed the particular relevance of these cells for future in vitro applications.


Subject(s)
Cell Differentiation , Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Metabolome , Proteome , Cells, Cultured , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Liver/blood supply , Liver/cytology
14.
Front Plant Sci ; 12: 656961, 2021.
Article in English | MEDLINE | ID: mdl-34093614

ABSTRACT

Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.

15.
APL Bioeng ; 5(2): 026104, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34027283

ABSTRACT

Interactions between the different liver cell types are critical to the maintenance or induction of their function in vitro. In this work, human-induced Pluripotent Stem Cells (hiPSCs)-derived Liver Sinusoidal Endothelial Cells (LSECs) and Hepatocytes-Like Cells (HLCs) were cultured and matured in a microfluidic environment. Both cell populations were differentiated in Petri dishes, detached, and inoculated in microfluidic biochips. In cocultures of both cell types, the tissue has exhibited a higher production of albumin (3.19 vs 5.31 µg/mL/106 cells in monocultures and cocultures) as well as a higher inducibility CYP450 over monocultures of HLCs. Tubular-like structures composed of LSECs and positive for the endothelial marker PECAM1, as well as a tissue more largely expressing Stabilin-2 were detected in cocultures only. In contrast, monocultures exhibited no network and less specific endothelial markers. The transcriptomic analysis did not reveal a marked difference between the profiles of both culture conditions. Nevertheless, the analysis allowed us to highlight different upstream regulators in cocultures (SP1, EBF1, and GATA3) and monocultures (PML, MECP2, and NRF1). In cocultures, the multi-omics dataset after 14 days of maturation in biochips has shown the activation of signaling related to hepatic maturation, angiogenesis, and tissue repair. In this condition, inflammatory signaling was also found to be reduced when compared to monocultures as illustrated by the activation of NFKB and by the detection of several cytokines involved in tissue injury in the latter. Finally, the extracted biological processes were discussed regarding the future development of a new generation of human in vitro hepatic models.

16.
mSystems ; 6(3)2021 May 11.
Article in English | MEDLINE | ID: mdl-33975972

ABSTRACT

Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant. Bradyrhizobium diazoefficiens USDA110 was isolated as a soybean symbiont, but it can also establish a functional symbiotic interaction with Aeschynomene afraspera In contrast to soybean, A. afraspera triggers terminal bacteroid differentiation, a process involving bacterial cell elongation, polyploidy, and increased membrane permeability, leading to a loss of bacterial viability while plants increase their symbiotic benefit. A combination of plant metabolomics, bacterial proteomics, and transcriptomics along with cytological analyses were used to study the physiology of USDA110 bacteroids in these two host plants. We show that USDA110 establishes a poorly efficient symbiosis with A. afraspera despite the full activation of the bacterial symbiotic program. We found molecular signatures of high levels of stress in A. afraspera bacteroids, whereas those of terminal bacteroid differentiation were only partially activated. Finally, we show that in A. afraspera, USDA110 bacteroids undergo atypical terminal differentiation hallmarked by the disconnection of the canonical features of this process. This study pinpoints how a rhizobium strain can adapt its physiology to a new host and cope with terminal differentiation when it did not coevolve with such a host.IMPORTANCE Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Some, but not all, legume plants optimize their return on investment in the symbiosis by imposing on their microsymbionts a terminal differentiation program that increases their symbiotic efficiency but imposes a high level of stress and drastically reduces their viability. We combined multi-omics with physiological analyses to show that the symbiotic couple formed by Bradyrhizobium diazoefficiens USDA110 and Aeschynomene afraspera, in which the host and symbiont did not evolve together, is functional but displays a low symbiotic efficiency associated with a disconnection of terminal bacteroid differentiation features.

17.
Food Chem Toxicol ; 152: 112155, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33775782

ABSTRACT

Several studies have reported a correlation between pesticides exposure and metabolic disorders. Dichlorodiphenyltrichloroethane (DDT) and permethrin (PMT), two pesticides highly prevalent in the environment, have been associated to dysregulation of liver lipids and glucose metabolisms and non-alcoholic fatty liver disease (NAFLD). However, the effects of DDT/PMT mixtures and mechanisms mediating their action remain unclear. Here, we used multi-omic to investigate the liver damage induced by DDT, PMT and their mixture in rat liver organ-on-chip. Organ-on-chip allow the reproduction of in vivo-like micro-environment. Two concentrations, 15 and 150 µM, were used to expose the hepatocytes for 24 h under perfusion. The transcriptome and metabolome analysis suggested a dose-dependent effect for all conditions, with a profile close to control for pesticides low-doses. The comparison between control and high-doses detected 266/24, 256/24 and 1349/30 genes/metabolites differentially expressed for DDT150, PMT150 and Mix150 (DDT150/PMT150). Transcriptome modulation reflected liver inflammation, steatosis, necrosis, PPAR signaling and fatty acid metabolism. The metabolome analysis highlighted common signature of three treatments including lipid and carbohydrates production, and a decrease in amino acids and krebs cycle intermediates. Our study illustrates the potential of organ-on-chip coupled to multi-omics for toxicological studies and provides new tools for chemical risk assessment.


Subject(s)
DDT/metabolism , Fatty Liver/metabolism , Hepatocytes/drug effects , Permethrin/metabolism , Pesticides/metabolism , Animals , Biomarkers/metabolism , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fatty Liver/chemically induced , Hepatocytes/metabolism , Lab-On-A-Chip Devices , Liver/cytology , Male , Metabolome/drug effects , Metabolomics/instrumentation , Metabolomics/methods , Rats, Sprague-Dawley , Transcription Factors/metabolism , Transcriptome/drug effects
19.
J Bacteriol ; 201(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31182497

ABSTRACT

Soil bacteria called rhizobia trigger the formation of root nodules on legume plants. The rhizobia infect these symbiotic organs and adopt an intracellular lifestyle within the nodule cells, where they differentiate into nitrogen-fixing bacteroids. Several legume lineages force their symbionts into an extreme cellular differentiation, comprising cell enlargement and genome endoreduplication. The antimicrobial peptide transporter BclA is a major determinant of this process in Bradyrhizobium sp. strain ORS285, a symbiont of Aeschynomene spp. In the absence of BclA, the bacteria proceed until the intracellular infection of nodule cells, but they cannot differentiate into enlarged polyploid and functional bacteroids. Thus, the bclA nodule bacteria constitute an intermediate stage between the free-living soil bacteria and the nitrogen-fixing bacteroids. Metabolomics on whole nodules of Aeschynomene afraspera and Aeschynomene indica infected with the wild type or the bclA mutant revealed 47 metabolites that differentially accumulated concomitantly with bacteroid differentiation. Bacterial transcriptome analysis of these nodules demonstrated that the intracellular settling of the rhizobia in the symbiotic nodule cells is accompanied by a first transcriptome switch involving several hundred upregulated and downregulated genes and a second switch accompanying the bacteroid differentiation, involving fewer genes but ones that are expressed to extremely elevated levels. The transcriptomes further suggested a dynamic role for oxygen and redox regulation of gene expression during nodule formation and a nonsymbiotic function of BclA. Together, our data uncover the metabolic and gene expression changes that accompany the transition from intracellular bacteria into differentiated nitrogen-fixing bacteroids.IMPORTANCE Legume-rhizobium symbiosis is a major ecological process, fueling the biogeochemical nitrogen cycle with reduced nitrogen. It also represents a promising strategy to reduce the use of chemical nitrogen fertilizers in agriculture, thereby improving its sustainability. This interaction leads to the intracellular accommodation of rhizobia within plant cells of symbiotic organs, where they differentiate into nitrogen-fixing bacteroids. In specific legume clades, this differentiation process requires the bacterial transporter BclA to counteract antimicrobial peptides produced by the host. Transcriptome analysis of Bradyrhizobium wild-type and bclA mutant bacteria in culture and in symbiosis with Aeschynomene host plants dissected the bacterial transcriptional response in distinct phases and highlighted functions of the transporter in the free-living stage of the bacterial life cycle.


Subject(s)
Bradyrhizobium/metabolism , Fabaceae/microbiology , Metabolome , Root Nodules, Plant/microbiology , Transcriptome , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Gene Expression Regulation, Bacterial/physiology , Nitrogen Fixation
20.
Plant J ; 99(1): 163-175, 2019 07.
Article in English | MEDLINE | ID: mdl-30868664

ABSTRACT

Regulation of seed germination by dormancy relies on a complex network of transcriptional and post-transcriptional modifications during seed imbibition that controls seed adaptive responses to environmental cues. High-throughput technologies have brought significant progress in the understanding of this phenomenon and have led to identify major regulators of seed germination, mostly by studying the behaviour of highly differentially expressed genes. However, the actual models of transcriptome analysis cannot catch additive effects of small variations of gene expression in individual signalling or metabolic pathways, which are also likely to control germination. Therefore, the comprehension of the molecular mechanism regulating germination is still incomplete and to gain knowledge about this process we have developed a pathway-based analysis of transcriptomic Arabidopsis datasets, to identify regulatory actors of seed germination. The method allowed quantifying the level of deregulation of a wide range of pathways in dormant versus non-dormant seeds. Clustering pathway deregulation scores of germinating and dormant seed samples permitted the identification of mechanisms involved in seed germination such as RNA transport or vitamin B6 metabolism, for example. Using this method, which was validated by metabolomics analysis, we also demonstrated that Col and Cvi seeds follow different metabolic routes for completing germination, demonstrating the genetic plasticity of this process. We finally provided an extensive basis of analysed transcriptomic datasets that will allow further identification of mechanisms controlling seed germination.


Subject(s)
Arabidopsis/metabolism , Germination/physiology , Seeds/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Germination/genetics , Plant Dormancy/genetics , Plant Dormancy/physiology , Seeds/physiology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...