Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 16(9): 7511-7522, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38700499

ABSTRACT

The battle against the COVID-19 pandemic has spurred a heightened state of vigilance in global healthcare, leading to the proliferation of diverse sanitization methods. Among these approaches, germicidal lamps utilizing ultraviolet (UV) rays, particularly UV-C (wavelength ranging from 280 to 100 nm), have gained prominence for domestic use. These light-emitting diode (LED) lamps are designed to sanitize the air, objects, and surfaces. However, the prevailing concern is that these UV lamps are often introduced into the market without adequate accompanying information to ensure their safe utilization. Importantly, exposure to absorbed UV light can potentially trigger adverse biological responses, encompassing cell death and senescence. Our research encompassed a series of investigations aimed at comprehending the biological repercussions of UV-C radiation exposure from readily available domestic lamps. Our focus centered on epithelial retinal cells, keratinocytes, and fibroblasts, components of the skin and ocular targets frequently exposed to UV irradiation. Our findings underscore the potential harm associated with even brief exposure to UV, leading to irreversible and detrimental alterations in both skin cells and retinal cells of the eye. Notably, epithelial retinal cells exhibited heightened sensitivity, marked by substantial apoptosis. In contrast, keratinocytes demonstrated resilience to apoptosis even at elevated UV doses, though they were prone to senescence. Meanwhile, fibroblasts displayed a gradual amplification of both senescence and apoptosis as radiation doses escalated. In summary, despite the potential benefits offered by UV-C in deactivating pathogens like SARS-CoV-2, it remains evident that the concurrent risks posed by UV-C to human health cannot be ignored.


Subject(s)
Apoptosis , COVID-19 , Cellular Senescence , SARS-CoV-2 , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Apoptosis/radiation effects , Humans , Cellular Senescence/radiation effects , SARS-CoV-2/radiation effects , Keratinocytes/radiation effects , Fibroblasts/radiation effects
3.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769049

ABSTRACT

Several investigations on senescence and its causative role in aging have underscored the importance of developing senotherapeutics, a field focused on killing senescent cells and/or preventing their accumulation within tissues. Using polyphenols in counteracting senescence may facilitate the development of senotherapeutics given their presence in the human diet, their confirmed tolerability and absence of severe side effects, and their role in preventing senescence and inducing the death of senescent cells. Against that background, we evaluated the effect of piceatannol, a natural polyphenol, on the senescence of mesenchymal stromal cells (MSCs), which play a key role in the body's homeostasis. Among our results, piceatannol reduced the number of senescent cells both after genotoxic stress that induced acute senescence and in senescent replicative cultures. Such senotherapeutics activity, moreover, promoted the recovery of cell proliferation and the stemness properties of MSCs. Altogether, our findings demonstrate piceatannol's effectiveness in counteracting senescence by targeting its associated pathways and detecting and affecting P53-dependent and P53-independent senescence. Our study thus suggests that, given piceatannol's various mechanisms to accomplish its pleiotropic activities, it may be able to counteract any senescent phenotypes.


Subject(s)
Cellular Senescence/drug effects , Mesenchymal Stem Cells/drug effects , Senotherapeutics/pharmacology , Stilbenes/pharmacology , Aging/drug effects , Cell Proliferation/drug effects , DNA Damage/drug effects , Humans
4.
Elife ; 92020 03 30.
Article in English | MEDLINE | ID: mdl-32223893

ABSTRACT

Senescent cells secrete several molecules, collectively named senescence-associated secretory phenotype (SASP). In the SASP of cells that became senescent following several in vitro chemical and physical stress, we identified the IGFBP-4 protein that can be considered a general stress mediator. This factor appeared to play a key role in senescence-paracrine signaling. We provided evidences showing that genotoxic injury, such as low dose irradiation, may promote an IGFBP-4 release in bloodstream both in mice irradiated with 100 mGy X-ray and in human subjects that received Computer Tomography. Increased level of circulating IGFBP-4 may be responsible of pro-aging effect. We found a significant increase of senescent cells in the lungs, heart, and kidneys of mice that were intraperitoneally injected with IGFBP-4 twice a week for two months. We then analyzed how genotoxic stressors may promote the release of IGFBP-4 and the molecular pathways associated with the induction of senescence by this protein.


Subject(s)
Aging , Cellular Senescence/genetics , DNA Damage , Insulin-Like Growth Factor Binding Protein 4/blood , Insulin-Like Growth Factor Binding Protein 4/genetics , Adolescent , Adult , Aged , Animals , Cell Proliferation , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Phenotype , Signal Transduction , Tomography, X-Ray Computed , Young Adult
5.
Stem Cells ; 36(8): 1146-1153, 2018 08.
Article in English | MEDLINE | ID: mdl-29664142

ABSTRACT

Exposure to high levels of ionizing radiation (IR) (>0.5 Gy) negatively affects health, but less is known about the effects of low-dose ionizing radiation (LDIR). Recent evidence suggests that it may have profound effects on cellular functions. People are commonly exposed to LDIR over natural background levels from numerous sources, including LDIR from medical diagnosis and therapy, air travel, illegal IR waste dumpsites, and occupational exposures in the nuclear and medical sectors. Stem cells reside for long periods of time in our bodies, and this increases the possibility that they may accumulate genotoxic damage derived from extrinsic LDIR or intrinsic sources (such as DNA replication). In this review, we provide an overview of LDIR effects on the biology of stem cell compartments. The principal findings and issues reported in the scientific literature are discussed in order to present the current understanding of the LDIR exposure risk and assess whether it may impact human health. We first consider the general biological consequences of LDIR exposure. Following this, we discuss the effects of LDIR on stem cells as discovered through in vitro and in vivo studies. Stem Cells 2018;36:1146-1153.


Subject(s)
Radiation, Ionizing , Stem Cells/radiation effects , Dose-Response Relationship, Radiation , Humans , Risk Factors , Stem Cells/cytology
6.
J Cell Biochem ; 118(9): 2993-3002, 2017 09.
Article in English | MEDLINE | ID: mdl-28252222

ABSTRACT

The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Alpha Particles , Apoptosis/radiation effects , Cellular Senescence/drug effects , Mesenchymal Stem Cells/metabolism , Dose-Response Relationship, Radiation , Humans , X-Rays
7.
Oncogene ; 22(21): 3330-42, 2003 May 22.
Article in English | MEDLINE | ID: mdl-12761503

ABSTRACT

We previously demonstrated that quercetin, a naturally occurring flavonoid with strong antioxidant properties, was able to enhance programmed cell death in HPB-acute lymphoblastic leukemia (ALL) cell line, derived from a human tymoma, when associated with the agonistic anti-CD95 monoclonal antibody. Here, we report that HPB-ALL cells are normally resistant to CD95-mediated apoptosis, and quercetin is able to sensitize this cell line through a mechanism independent of its antioxidant properties. In fact, other compounds structurally and functionally similar to quercetin, when associated with anti-CD95 antibody did not induce any CD95-mediated apoptosis, still maintaining their antioxidant capacity. We found that quercetin effects are mediated by the activation of PKCalpha. Treatment of HPB-ALL cells with quercetin slightly decreased PKCalpha activity, but when the flavonoid was associated with anti-CD95, the kinase activity increased by 12-fold with respect to the treatment with quercetin. In addition, overexpression of PKCalpha induced programmed cell death in the absence of any additional stimulus, while a kinase-defective mutant of PKCalpha was ineffective. Our data confirm the involvement of specific PKC isoforms in CD95 signaling and suggest, for the first time, that quercetin targets this pathway increasing apoptogenic response in a cell line resistant to CD95-mediated apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Protein Kinase C/metabolism , Quercetin/pharmacology , fas Receptor/metabolism , Antibodies, Monoclonal/pharmacology , Antioxidants/pharmacology , Caspases/metabolism , Enzyme Activation , Humans , Jurkat Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase C-alpha , Tumor Cells, Cultured , fas Receptor/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...