Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 197: 117104, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33857895

ABSTRACT

New SARS-CoV-2 mutations are constantly emerging, raising concerns of increased transmissibility, virulence or escape from host immune response. We describe a nested RT-PCR assay (~1500 bps) to detect multiple nucleotide changes resulting in key spike protein mutations distinctive of the major known circulating SARS-CoV-2 variants, including the three Variants of Concern (VOCs) 20I/501Y.V1 (United Kingdom), 20H/501Y.V2 (South Africa), and 20 J/501Y.V3 (Brazil), as well as the 20E.EU1 variant (Spain), the CAL.20C recently identified in California, and the mink-associated variant (GR, lineage B.1.1.298). Prior to application to field samples, the discriminatory potential of this PCR assay was explored using GISAID and Nextclade. To extend variant detection to challenging matrices such as sewage, where the amplification of long fragments is problematic, two short nested RT-PCR assays (~300 bps) were also designed, targeting portions of the region spanned by the long nested assay. The three newly-designed assays were then tested on field samples, including 31 clinical samples (7 fully-sequenced swab samples, and 24 uncharacterized ones) and 34 urban wastewater samples, some of which collected in areas where circulation of VOCs had been reported. The long assay successfully amplified 29 of the 31 swabs (93%), allowing the correct identification of variants 20I/501Y.V1 and 20E.EU1 present in the panel of previously characterized samples. The Spanish variant was detected in 14/24 of the uncharacterized samples as well. The sequences obtained using the short assays were consistent with those obtained with the long assay. Mutations characteristic of VOCs (UK and Brazilian variant) and of other variant (Spanish) were detected in sewage samples. To our knowledge, this is the first evidence of the presence of sequences harboring key mutations of 20I/501Y.V1 and 20 J/501Y.V3 in urban wastewaters, highlighting the potential contribution of wastewater surveillance to explore SARS-CoV-2 diversity. The developed nested RT-PCR assays can be used as an initial rapid screening test to select clinical samples containing mutations of interest. This can speed up diagnosis and optimize resources since it allows full genome sequencing to be done only on clinically relevant specimens. The assays can be also employed for a rapid and cost-effective detection of VOCs or other variants in sewage for the purposes of wastewater-based epidemiology. The approach proposed here can be used to better understand SARS-CoV-2 variant diversity, geographic distribution and impact worldwide.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil , Humans , Mutation , Reverse Transcriptase Polymerase Chain Reaction , South Africa , Spain , Spike Glycoprotein, Coronavirus/genetics , United Kingdom
2.
Sci Rep ; 10(1): 8163, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32424216

ABSTRACT

Precambrian cellular remains frequently have simple morphologies, micrometric dimensions and are poorly preserved, imposing severe analytical and interpretational challenges, especially for irrefutable attestations of biogenicity. The 1.88 Ga Gunflint biota is a Precambrian microfossil assemblage with different types and qualities of preservation across its numerous geological localities and provides important insights into the Proterozoic biosphere and taphonomic processes. Here we use synchrotron-based ptychographic X-ray computed tomography to investigate well-preserved carbonaceous microfossils from the Schreiber Beach locality as well as poorly-preserved, iron-replaced fossil filaments from the Mink Mountain locality, Gunflint Formation. 3D nanoscale imaging with contrast based on electron density allowed us to assess the morphology and carbonaceous composition of different specimens and identify the minerals associated with their preservation based on retrieved mass densities. In the Mink Mountain filaments, the identification of mature kerogen and maghemite rather than the ubiquitously described hematite indicates an influence from biogenic organics on the local maturation of iron oxides through diagenesis. This non-destructive 3D approach to microfossil composition at the nanoscale within their geological context represents a powerful approach to assess the taphonomy and biogenicity of challenging or poorly preserved traces of early microbial life, and may be applied effectively to extraterrestrial samples returned from upcoming space missions.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 349-355, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29635179

ABSTRACT

DNA nucleotides are used as a molecular recognition system on electrodes modified to be applied in the detection of various diseases, but immobilization mechanisms, as well as, charge transfers are not satisfactorily described in the literature. An electrochemical and spectroscopic study was carried out to characterize the molecular groups involved in the direct immobilization of DNA structures on the surface of nanostructured TiO2 with the aim of evaluating the influence of the geometrical aspects. X-ray photoelectron spectroscopy at O1s and P2p core levels indicate that immobilization of DNA samples occurs through covalent (POTi) bonds. X-ray absorption spectra at the Ti2p edge reinforce this conclusion. A new species at 138.5eV was reported from P2p XPS spectra analysis which plays an important role in DNA-TiO2 immobilization. The POTi/OTi ratio showed that quantitatively the DNA immobilization mechanism is dependent on their geometry, becoming more efficient for plasmid ds-DNA structures than for PCR ds-DNA structures. The analysis of photoabsorption spectra at C1s edge revealed that the molecular groups that participate in the C1s→LUMO electronic transitions have different pathways in the charge transfer processes at the DNA-TiO2 interface. Our results may contribute to additional studies of immobilization mechanisms understanding the influence of the geometry of different DNA molecules on nanostructured semiconductor and possible impact to the charge transfer processes with application in biosensors or aptamers.


Subject(s)
Biosensing Techniques/methods , Electrodes , Immobilized Nucleic Acids/chemistry , Photoelectron Spectroscopy/methods , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL