Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Hum Brain Mapp ; 45(1): e26571, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224544

ABSTRACT

The ability to detect and assess world-relative object-motion is a critical computation performed by the visual system. This computation, however, is greatly complicated by the observer's movements, which generate a global pattern of motion on the observer's retina. How the visual system implements this computation is poorly understood. Since we are potentially able to detect a moving object if its motion differs in velocity (or direction) from the expected optic flow generated by our own motion, here we manipulated the relative motion velocity between the observer and the object within a stationary scene as a strategy to test how the brain accomplishes object-motion detection. Specifically, we tested the neural sensitivity of brain regions that are known to respond to egomotion-compatible visual motion (i.e., egomotion areas: cingulate sulcus visual area, posterior cingulate sulcus area, posterior insular cortex [PIC], V6+, V3A, IPSmot/VIP, and MT+) to a combination of different velocities of visually induced translational self- and object-motion within a virtual scene while participants were instructed to detect object-motion. To this aim, we combined individual surface-based brain mapping, task-evoked activity by functional magnetic resonance imaging, and parametric and representational similarity analyses. We found that all the egomotion regions (except area PIC) responded to all the possible combinations of self- and object-motion and were modulated by the self-motion velocity. Interestingly, we found that, among all the egomotion areas, only MT+, V6+, and V3A were further modulated by object-motion velocities, hence reflecting their possible role in discriminating between distinct velocities of self- and object-motion. We suggest that these egomotion regions may be involved in the complex computation required for detecting scene-relative object-motion during self-motion.


Subject(s)
Motion Perception , Neocortex , Humans , Motion Perception/physiology , Brain Mapping , Motion , Gyrus Cinguli , Photic Stimulation/methods
2.
Hum Brain Mapp ; 44(10): 3954-3971, 2023 07.
Article in English | MEDLINE | ID: mdl-37219891

ABSTRACT

The perception and imagery of landmarks activate similar content-dependent brain areas, including occipital and temporo-medial brain regions. However, how these areas interact during visual perception and imagery of scenes, especially when recollecting their spatial location, remains unknown. Here, we combined functional magnetic resonance imaging (fMRI), resting-state functional connectivity (rs-fc), and effective connectivity to assess spontaneous fluctuations and task-induced modulation of signals among regions entailing scene-processing, the primary visual area and the hippocampus (HC), responsible for the retrieval of stored information. First, we functionally defined the scene-selective regions, that is, the occipital place area (OPA), the retrosplenial complex (RSC) and the parahippocampal place area (PPA), by using the face/scene localizer, observing that two portions of the PPA-anterior and posterior PPA-were consistently activated in all subjects. Second, the rs-fc analysis (n = 77) revealed a connectivity pathway similar to the one described in macaques, showing separate connectivity routes linking the anterior PPA with RSC and HC, and the posterior PPA with OPA. Third, we used dynamic causal modelling to evaluate whether the dynamic couplings among these regions differ between perception and imagery of familiar landmarks during a fMRI task (n = 16). We found a positive effect of HC on RSC during the retrieval of imagined places and an effect of occipital regions on both RSC and pPPA during the perception of scenes. Overall, we propose that under similar functional architecture at rest, different neural interactions take place between regions in the occipito-temporal higher-level visual cortex and the HC, subserving scene perception and imagery.


Subject(s)
Brain Mapping , Neocortex , Brain Mapping/methods , Occipital Lobe/physiology , Temporal Lobe/physiology , Visual Perception/physiology , Magnetic Resonance Imaging , Photic Stimulation
3.
Sci Rep ; 13(1): 6218, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069425

ABSTRACT

Neuroimaging studies associate specific functional roles to distinct brain regions investigating separate cognitive processes using dedicated tasks. For example, using both correlative (i.e., fMRI) and causal (i.e., TMS) approaches it has been shown the involvement of intra-parietal sulcus (IPS), as part of the dorsal attention network, in spatial attentional tasks as well as the importance of the angular gyrus (AG), as part of the default mode network, during the selection of relevant information in semantic memory. Nonetheless, in our daily life attention and semantic memory are rarely needed in isolation. In the present TMS study we investigate how the brain combines attentional and semantic memory demands in a single task. Results showed that, compared to a pseudo-TMS, stimulation of IPS, but not AG, affects behavioral performance, thus suggesting its preponderant role in such a combined task. Moreover, the lack of difference between the effect of IPS and AG stimulations seems to suggest that the two regions may be coactivated or that a third-party source might indirectly mediate the interaction between the two networks.


Subject(s)
Semantics , Transcranial Magnetic Stimulation , Transcranial Magnetic Stimulation/methods , Parietal Lobe/physiology , Memory/physiology , Brain/physiology , Brain Mapping , Magnetic Resonance Imaging
4.
Sci Rep ; 13(1): 4958, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973324

ABSTRACT

Research on the contribution of the ipsilateral hemisphere to unilateral movements, and how it is mediated by transcallosal connections, has so far provided contradictory findings. By using dynamic causal modelling (DCM) and Parametric Empirical Bayes analyses applied to fMRI data, we sought to describe effective connectivity during pantomimed and imagined right-hand grasping within the grasping network, namely the anterior intraparietal sulcus, ventral and dorsal (PMd) premotor cortex, supplementary motor area and primary motor cortex (M1). The two-fold aim of the present work was to explore a) whether right and left parieto-frontal areas show similar connectivity couplings, and b) the interhemispheric dynamics between these regions across the two hemispheres. We detected a network architecture comparable across hemispheres during executed but not imagined grasping movements. Furthermore, during pantomimed grasping the interhemispheric crosstalk was mainly driven by premotor areas: we found an inhibitory influence from the right PMd toward the left premotor and motor areas and excitatory couplings between homologous ventral premotor and supplementary motor regions. Overall, our results support the view that dissociable components of unilateral grasping execution are encoded by a non-lateralized set of brain areas complexly intertwined by interhemispheric dynamics, whereas motor imagery obeys different principles.


Subject(s)
Motor Cortex , Motor Cortex/diagnostic imaging , Bayes Theorem , Brain , Movement , Hand , Brain Mapping , Magnetic Resonance Imaging
5.
Exp Brain Res ; 241(3): 865-874, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36781456

ABSTRACT

Self-motion information is required to keep track of where we are with respect to our environment (spatial updating). Visual signals such as optic flow are relevant to provide information about self-motion, especially in the absence of vestibular and/or proprioceptive cues generated by physical movement. However, the role of optic flow on spatial updating is still debated. A virtual reality system based on a head-mounted display was used to allow participants to experience a self-motion sensation within a naturalistic environment in the absence of physical movement. We asked participants to keep track of spatial positions of a target during simulated self-motion while manipulating the availability of optic flow coming from the lower part of the environment (ground plane). In each trial, the ground could be a green lawn (optic flow ON) or covered in snow (optic flow OFF). We observed that the lack of optic flow on the ground had a detrimental effect on spatial updating. Furthermore, we explored the interaction between the optic flow availability and different characteristics of self-motion: we observed that increasing self-motion speed had a detrimental effect on spatial updating, especially in the absence of optic flow, while self-motion direction (leftward, forward, rightward) and path (translational and curvilinear) had no statically significant effect. Overall, we demonstrated that, in the absence of some idiothetic cues, the optic flow provided by the ground has a dominant role for the self-motion estimation and, hence, for the ability to update the spatial relationships between one's position and the position of the surrounding objects.


Subject(s)
Motion Perception , Optic Flow , Virtual Reality , Humans , Photic Stimulation/methods , Movement , Cues
6.
Cereb Cortex ; 33(6): 2517-2538, 2023 03 10.
Article in English | MEDLINE | ID: mdl-35709758

ABSTRACT

Despite extensive research, the functional architecture of the subregions of the dorsal posterior parietal cortex (PPC) involved in sensorimotor processing is far from clear. Here, we draw a thorough picture of the large-scale functional organization of the PPC to disentangle the fronto-parietal networks mediating visuomotor functions. To this aim, we reanalyzed available human functional magnetic resonance imaging data collected during the execution of saccades, hand, and foot pointing, and we combined individual surface-based activation, resting-state functional connectivity, and effective connectivity analyses. We described a functional distinction between a more lateral region in the posterior intraparietal sulcus (lpIPS), preferring saccades over pointing and coupled with the frontal eye fields (FEF) at rest, and a more medial portion (mpIPS) intrinsically correlated to the dorsal premotor cortex (PMd). Dynamic causal modeling revealed feedforward-feedback loops linking lpIPS with FEF during saccades and mpIPS with PMd during pointing, with substantial differences between hand and foot. Despite an intrinsic specialization of the action-specific fronto-parietal networks, our study reveals that their functioning is finely regulated according to the effector to be used, being the dynamic interactions within those networks differently modulated when carrying out a similar movement (i.e. pointing) but with distinct effectors (i.e. hand and foot).


Subject(s)
Brain Mapping , Motor Cortex , Humans , Brain Mapping/methods , Motor Cortex/physiology , Saccades , Parietal Lobe/physiology , Movement/physiology , Magnetic Resonance Imaging
7.
Brain Struct Funct ; 227(8): 2573-2592, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963915

ABSTRACT

The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.


Subject(s)
Motion Perception , Visual Cortex , Humans , Visual Cortex/physiology , Brain Mapping , Temporal Lobe/physiology , Motion Perception/physiology , Movement , Visual Pathways/physiology , Photic Stimulation
8.
World Neurosurg ; 164: e1015-e1023, 2022 08.
Article in English | MEDLINE | ID: mdl-35643402

ABSTRACT

BACKGROUND: Arteriovenous malformations (AVMs) located in eloquent areas are associated with a significant risk of neurologic deterioration. Awake surgery applied to intracranial AVMs could better identify eloquent areas, but its feasibility and application are controversial and limited to small case series. METHODS: We retrospectively reviewed a group of 59 brain AVMs located in eloquent areas surgically treated with asleep craniotomy and compared it with a combined group of patients treated with awake craniotomy. Patients were stratified into 2 groups: patients who underwent asleep surgery and patients who underwent awake surgery. With this study, we aimed to perform a complete analysis of surgical risks and outcomes for this subgroup of patients in order to provide a basis for a future prospective study. RESULTS: We compared the asleep group of 25 patients and the awake group of 34 patients. No statistically significant differences were identified regarding the risk of postoperative complications, surgical radicality, presence of residual, and need for adjuvant treatment (P = 1.00). The improvement in Karnofsky Performance Status (KPS) was more rapid and effective during follow-up in patients treated with awake surgery compared with asleep surgery (KPS at day 30 >70%-80% versus 87.2%, P = 0.01 and at 1year KPS >70%-80% vs. 96.9%, P = 0.02). CONCLUSIONS: In contrast to what is commonly believed, applying awake surgery to this lesion does not involve increased intraoperative risks. Still, it seems to determine a significant improvement in the outcome of patients from postoperative day 30 onwards.


Subject(s)
Brain Neoplasms , Intracranial Arteriovenous Malformations , Brain Neoplasms/surgery , Craniotomy , Humans , Intracranial Arteriovenous Malformations/surgery , Prospective Studies , Retrospective Studies , Wakefulness
9.
Brain Struct Funct ; 227(7): 2313-2328, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35763171

ABSTRACT

Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.


Subject(s)
Brain Mapping , Visual Cortex , Goals , Humans , Magnetic Resonance Imaging , Movement , Photic Stimulation , Psychomotor Performance , Saccades
10.
Neurol Sci ; 43(8): 5083-5086, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35583841

ABSTRACT

Slowness of information processing (SIP) is frequently reported after traumatic brain injury (TBI). Previous studies point toward a pivotal role of white matter damage on speed of information processing. However, little is known about the more comprehensive and ecological assessment of SIP in TBI. Here, we combined an ecological assessment of SIP with the use of tract-based spatial statistics (TBSS) on individuals' fractional anisotropy (FA) maps. Twenty-six moderate-to-severe patients with TBI (21 males and 5 females) participated in this study: 10 individuals were classified as not having SIP (SIP-) and 16 were classified as having SIP (SIP +). SIP + showed lower FA in bilateral anterior thalamic radiation, corticospinal tract, cingulum, and forceps, as well as in bilateral inferior fronto-occipital, inferior and superior longitudinal fasciculi and uncinate fasciculus. Overall, this result is consistent with and expands previous reports on information processing speed to a more comprehensive and ecological perspective on SIP in TBI.


Subject(s)
Brain Injuries, Traumatic , White Matter , Anisotropy , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Diffusion Tensor Imaging , Female , Humans , Male , White Matter/diagnostic imaging
11.
Brain Struct Funct ; 227(5): 1831-1842, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35312868

ABSTRACT

Successful navigation relies on the ability to identify, perceive, and correctly process the spatial structure of a scene. It is well known that visual mental imagery plays a crucial role in navigation. Indeed, cortical regions encoding navigationally relevant information are also active during mental imagery of navigational scenes. However, it remains unknown whether their intrinsic activity and connectivity reflect the individuals' ability to imagine a scene. Here, we primarily investigated the intrinsic causal interactions among scene-selective brain regions such as Parahipoccampal Place Area (PPA), Retrosplenial Complex, and Occipital Place Area (OPA) using Dynamic Causal Modelling for resting-state functional magnetic resonance data. Second, we tested whether resting-state effective connectivity parameters among scene-selective regions could reflect individual differences in mental imagery in our sample, as assessed by the self-reported Vividness of Visual Imagery Questionnaire. We found an inhibitory influence of occipito-medial on temporal regions, and an excitatory influence of more anterior on more medial and posterior brain regions. Moreover, we found that a key role in imagery is played by the connection strength from OPA to PPA, especially in the left hemisphere, since the influence of the signal between these scene-selective regions positively correlated with good mental imagery ability. Our investigation contributes to the understanding of the complexity of the causal interaction among brain regions involved in navigation and provides new insight in understanding how an essential ability, such as mental imagery, can be explained by the intrinsic fluctuation of brain signal.


Subject(s)
Brain Mapping , Individuality , Brain , Humans , Magnetic Resonance Imaging
12.
Cogn Neuropsychol ; 39(5-8): 325-355, 2022.
Article in English | MEDLINE | ID: mdl-36967227

ABSTRACT

We assessed effects of semantic interference in people with aphasia (PWA). Two naming tasks (continuous naming and cyclic blocking) were contrasted with tasks which required suppression of competitors but minimized lexical access (probe task) or required extra-lexical mechanisms of control (Stroop task). In continuous naming, some PWA showed increased interference compared to control participants, with slower RTs and increased omissions. Others showed normal or weaker interference effects in terms of RTs but increased semantic errors. Patterns were consistent only between naming tasks. We explain results by assuming that some PWA are slow at implementing mechanisms of control/selection which weed-out competitors. Others, instead, will have activation difficulties which will induce them to lower the threshold needed for selection. Results highlight how different kinds of brain damage may induce different compensatory strategies and how semantic relatedness may induce both interference and facilitation. Implications for models of lexical selection are discussed.


Subject(s)
Aphasia , Semantics , Humans
13.
Arch Clin Neuropsychol ; 37(2): 227-239, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-34423813

ABSTRACT

OBJECTIVE: Social cognition can be impaired after a severe acquired brain injury (sABI), but mechanisms potentially underlying these difficulties remain to be clarified. This study aimed at investigating perspective taking ability in individuals with sABI. METHOD: Twenty individuals with sABI and 20 healthy controls (HCs) have been enrolled in this case-control study. All participants were submitted to an experimental visual-spatial priming memory procedure and a self-report assessment of perspective taking (i.e., the Interpersonal Reactivity Index [IRI]). Individuals with sABI were submitted to neuropsychological tests to assess executive subcomponents, working memory, and visual attention. RESULTS: The analysis on self-report scales data documents a significant between groups difference in the IRI-Fantasy subscale, with HCs showing a higher tendency to imaginatively transpose oneself into fictional situations than individuals with sABI. Analysis of performance on the experimental procedure revealed the priming effect in HCs but not in sABI individuals. Moreover, individuals with sABI performed significantly poorer than HCs on the indices of the experimental procedure. CONCLUSIONS: Our data preliminarily demonstrated that visual-spatial perspective taking is reduced after sABI. Findings above could give some clues for the rehabilitative intervention in sABI and suggest the possible application of the procedure here used in assessing perspective taking after sABI.


Subject(s)
Brain Injuries , Brain Injuries/complications , Case-Control Studies , Humans , Neuropsychological Tests , Self Report , Self-Assessment
14.
Neuroimage ; 244: 118581, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34543763

ABSTRACT

During real-world locomotion, in order to be able to move along a path or avoid an obstacle, continuous changes in self-motion direction (i.e. heading) are needed. Control of heading changes during locomotion requires the integration of multiple signals (i.e., visual, somatomotor, vestibular). Recent fMRI studies have shown that both somatomotor areas (human PEc [hPEc], human PE [hPE], primary somatosensory cortex [S-I]) and egomotion visual regions (cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) respond to either leg movements and egomotion-compatible visual stimulations, suggesting a role in the analysis of both visual attributes of egomotion and somatomotor signals with the aim of guiding locomotion. However, whether these regions are able to integrate egomotion-related visual signals with somatomotor inputs coming from leg movements during heading changes remains an open question. Here we used a combined approach of individual functional localizers and task-evoked activity by fMRI. In thirty subjects we first localized three egomotion areas (CSv, pCi, PIC) and three somatomotor regions (S-I, hPE, hPEc). Then, we tested their responses in a multisensory integration experiment combining visual and somatomotor signals relevant to locomotion in congruent or incongruent trials. We used an fMR-adaptation paradigm to explore the sensitivity to the repeated presentation of these bimodal stimuli in the six regions of interest. Results revealed that hPE, S-I and CSv showed an adaptation effect regardless of congruency, while PIC, pCi and hPEc showed sensitivity to congruency. PIC exhibited a preference for congruent trials compared to incongruent trials. Areas pCi and hPEc exhibited an adaptation effect only for congruent and incongruent trials, respectively. PIC, pCi and hPEc sensitivity to the congruency relationship between visual (locomotion-compatible) cues and (leg-related) somatomotor inputs suggests that these regions are involved in multisensory integration processes, likely in order to guide/adjust leg movements during heading changes.


Subject(s)
Insular Cortex/physiology , Locomotion/physiology , Motor Cortex/physiology , Adult , Evoked Potentials , Female , Humans , Leg/physiology , Magnetic Resonance Imaging , Male , Young Adult
15.
Sensors (Basel) ; 21(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066388

ABSTRACT

Performance of continuous emission noise radar systems are affected by the sidelobes of the output of the matched filter, with significant effects on detection and dynamic range. Hence, the sidelobe level has to be controlled by a careful design of the transmitted waveform and of the transmit/receive parts of the radar. In this context, the average transmitted power has to be optimized by choosing waveforms with a peak-to-average power ratio as close to the unity as possible. However, after coherent demodulation and acquisition of the received signal and of the reference signal at the transmitting antenna port, the goodness (low sidelobes) of the output from the matched filter can be considerably reduced by the deleterious effects due to the radar hardware, including the analog-to-digital converter (ADC). This paper aims to solve the above problems from both the theoretical and the practical viewpoint and recommends the use of tailored waveforms for mitigating the dynamic range issues. The new findings are corroborated by the results from two noise radar demonstrators operating in Germany (rural environment) and in Turkey (coast and sea environment) and the related lessons learnt.

16.
Cogn Process ; 22(3): 501-514, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33792831

ABSTRACT

Humans differ widely in their ability to navigate effectively through the environment and in spatial memory skills. Navigation in the environment requires the analysis of many spatial cues, the construction of internal representations, and the use of various strategies. We present a novel tool to assess individual differences in human navigation, consisting of a virtual radial-arm maze presented as an art gallery to explore whether different sets of instructions (intentional or incidental) affect subjects' navigation performance. We furthermore tested the effect of the instructions on exploration strategies during both place learning and recall. We evaluated way-finding ability in 42 subjects, and individual differences in navigation were assessed through the analysis of navigational paths, which permitted the isolation and definition of a few strategies adopted by the incidental and intentional instructions groups. Our results showed that the intentional instruction group performed better than the other group: these subjects correctly paired each central statue and the two paintings in the adjacent arms, and they made less working and reference memory errors. Our analysis of path lengths showed that the intentional instruction group spent more time in the maze (thus being slower), specifically in the central hall, and covered more distance; the time spent in the main hall was, therefore, indicative of the quality of the following performance. Studying how environmental representations and the relative navigational strategies vary among "intentional" and "incidental" groups provides a new window into the acknowledgment of possible strategies to help subjects construct more efficient approaches in human navigation.


Subject(s)
Spatial Navigation , Cues , Humans , Individuality , Maze Learning , Spatial Memory
17.
Brain Struct Funct ; 226(5): 1511-1531, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33821379

ABSTRACT

It is commonly acknowledged that visual imagery and perception rely on the same content-dependent brain areas in the high-level visual cortex (HVC). However, the way in which our brain processes and organizes previous acquired knowledge to allow the generation of mental images is still a matter of debate. Here, we performed a representation similarity analysis of three previous fMRI experiments conducted in our laboratory to characterize the neural representation underlying imagery and perception of objects, buildings and faces and to disclose possible dissimilarities in the neural structure of such representations. To this aim, we built representational dissimilarity matrices (RDMs) by computing multivariate distances between the activity patterns associated with each pair of stimuli in the content-dependent areas of the HVC and HC. We found that spatial information is widely coded in the HVC during perception (i.e. RSC, PPA and OPA) and imagery (OPA and PPA). Also, visual information seems to be coded in both preferred and non-preferred regions of the HVC, supporting a distributed view of encoding. Overall, the present results shed light upon the spatial coding of imagined and perceived exemplars in the HVC.


Subject(s)
Brain Mapping , Brain , Brain/diagnostic imaging , Imagination , Magnetic Resonance Imaging , Neurons , Visual Cortex
18.
Brain Sci ; 11(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668964

ABSTRACT

Several studies have found in the sense of touch a good sensory modality by which to study body representation. Here, we address the "metric component of body representation", a specific function developed to process the discrimination of tactile distances on the body. The literature suggests the involvement of the right angular gyrus (rAG) in processing the tactile metricity on the body. The question of this study is the following: is the rAG also responsible for the visual metric component of body representation? We used tDCS (anodal and sham) in 20 subjects who were administered an on-body distance discrimination task with both tactile and visual stimuli. They were also asked to perform the same task in a near-body condition. The results allow us to confirm the role of rAG in the estimation of tactile distances. Further, we also showed that rAG might be involved in the discrimination of distances on the body not only in tactile but also in visual modality. Finally, based on the significant effects of anodal stimulation even in a near-body visual discrimination task, we proposed a higher-order function of the AG in terms of a supramodal comparator of quantities.

19.
Brain Struct Funct ; 226(9): 2989-3005, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33738579

ABSTRACT

Visual cues coming from the lower visual field (VF) play an important role in the visual guidance of upper and lower limb movements. A recently described region situated in the dorsomedial parietal cortex, area hPEc (Pitzalis et al. in NeuroImage 202:116092, 2019), might have a role in integrating visually derived information with somatomotor signals to guide limb interaction with the environment. In macaque, it has been demonstrated that PEc receives visual information mostly from the lower visual field but, to date, there has been no systematic investigation of VF preference in the newly defined human homologue of macaque area PEc (hPEc). Here we examined the VF preferences of hPEc while participants performed a visuomotor task implying spatially directed delayed eye-, hand- and foot-movements towards different spatial locations within the VF. By analyzing data as a function of the different target locations towards which upcoming movements were planned (and then executed), we observed the presence of asymmetry in the vertical dimension of VF in area hPEc, being this area more strongly activated by limb movements directed towards visual targets located in the lower compared to the upper VF. This result confirms the view, first advanced in macaque monkey, that PEc is involved in processing visual information to guide body interaction with the external environment, including locomotion. We also observed a contralateral dominance for the lower VF preference in the foot selective somatomotor cortex anterior to hPEc. This result might reflect the role of this cortex (which includes areas PE and S-I) in providing highly topographically organized signals, likely useful to achieve an appropriate foot posture during locomotion.


Subject(s)
Magnetic Resonance Imaging , Visual Fields , Animals , Hand , Humans , Macaca , Movement , Parietal Lobe
20.
Cortex ; 137: 74-92, 2021 04.
Article in English | MEDLINE | ID: mdl-33607346

ABSTRACT

During locomotion, leg movements define the direction of walking (forward or backward) and the path one is taking (straight or curved). These aspects of locomotion produce characteristic visual motion patterns during movement. Here, we tested whether cortical regions responding to either egomotion-compatible visual motion, or leg movements, or both, are sensitive to these locomotion-relevant aspects of visual motion. We compared a curved path (typically the visual feedback of a changing direction of movement in the environment) to a linear path for simulated forward and backward motion in an event-related fMRI experiment. We used an individual surface-based approach and two functional localizers to define (1) six egomotion-related areas (V6+, V3A, intraparietal motion area [IPSmot], cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) using the flow field stimulus and (2) three leg-related cortical regions (human PEc [hPEc], human PE [hPE] and primary somatosensory cortex [S-I]) using a somatomotor task. Then, we extracted the response from all these regions with respect to the main event-related fMRI experiment, consisting of passive viewing of an optic flow stimulus, simulating a forward or backward direction of self-motion in either linear or curved path. Results showed that some regions have a significant preference for the curved path motion (hPEc, hPE, S-I, IPSmot) or a preference for the forward motion (V3A), while other regions have both a significant preference for the curved path motion and for the forward compared to backward motion (V6+, CSv, pCi). We did not find any significant effects of the present stimuli in PIC. Since controlling locomotion mainly means controlling changes of walking direction in the environment during forward self-motion, such a differential functional profile among these cortical regions suggests that they play a differentiated role in the visual guidance of locomotion.


Subject(s)
Motion Perception , Optic Flow , Humans , Locomotion , Magnetic Resonance Imaging , Motion , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...