Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Primates ; 65(4): 209-215, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38687456

ABSTRACT

Chimpanzees (Pan troglodytes) are categorized as Endangered by the International Union for Conservation of Nature, and habitat loss due to conversion of land for agriculture is one of the major threats to wild populations of this species. This challenging scenario can lead to negative human-chimpanzee interactions, including crop feeding. Chimpanzees consume crops across their geographical range, although little is known about this behavior in savanna habitats. Here we provide new evidence of crop feeding by savanna chimpanzees. We conducted our observations at Dindefelo, a community nature reserve in southeastern Senegal. The chimpanzees were observed to feed on mango (Mangifera indica) and also on baobab (Adansonia digitata), a wild species considered a crop by local people when found in and around villages. Although local people use the fruits of these species for food and income, they tolerated crop-feeding events until recently. In 2023, a case of harassment of a crop-feeding chimpanzee in a mango orchard was witnessed, and four days later a chimpanzee corpse was found at the same place. We conclude that habitat conversion into agricultural fields, uncontrolled bush fires and extraction of wild fruits are the important factors influencing crop-feeding events at Dindefelo. Our findings highlight the need to better understand human-chimpanzee interactions in the anthropogenic landscape of Dindefelo to help mitigate negative attitudes and behaviors towards chimpanzees.


Subject(s)
Conservation of Natural Resources , Feeding Behavior , Pan troglodytes , Animals , Pan troglodytes/physiology , Senegal , Mangifera , Grassland , Crops, Agricultural , Female , Male
2.
Genome Med ; 16(1): 32, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355605

ABSTRACT

BACKGROUND: To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS: We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS: Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS: GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.


Subject(s)
High-Throughput Nucleotide Sequencing , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Base Sequence , Chromosome Mapping , Exome Sequencing
3.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37853102

ABSTRACT

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Subject(s)
Exome , Rare Diseases , Humans , Rare Diseases/genetics , Benchmarking , Exome Sequencing , Genetic Testing/methods
6.
Hum Genomics ; 17(1): 39, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138343

ABSTRACT

BACKGROUND: Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. RESULTS: We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. CONCLUSION: We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Humans , Exome/genetics , Exome Sequencing , High-Throughput Nucleotide Sequencing/methods , Genome, Human/genetics , Base Sequence , DNA Copy Number Variations/genetics
7.
HGG Adv ; 4(2): 100181, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36785559

ABSTRACT

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Subject(s)
Retinitis Pigmentosa , Usher Syndromes , Humans , Usher Syndromes/diagnosis , RNA Precursors , Mutation , Pedigree , Retinitis Pigmentosa/diagnosis , Whole Genome Sequencing , Extracellular Matrix Proteins/genetics
8.
Eur J Hum Genet ; 31(1): 81-88, 2023 01.
Article in English | MEDLINE | ID: mdl-36114283

ABSTRACT

Genome sequencing (GS) can identify novel diagnoses for patients who remain undiagnosed after routine diagnostic procedures. We tested whether GS is a better first-tier genetic diagnostic test than current standard of care (SOC) by assessing the technical and clinical validity of GS for patients with neurodevelopmental disorders (NDD). We performed both GS and exome sequencing in 150 consecutive NDD patient-parent trios. The primary outcome was diagnostic yield, calculated from disease-causing variants affecting exonic sequence of known NDD genes. GS (30%, n = 45) and SOC (28.7%, n = 43) had similar diagnostic yield. All 43 conclusive diagnoses obtained with SOC testing were also identified by GS. SOC, however, required integration of multiple test results to obtain these diagnoses. GS yielded two more conclusive diagnoses, and four more possible diagnoses than ES-based SOC (35 vs. 31). Interestingly, these six variants detected only by GS were copy number variants (CNVs). Our data demonstrate the technical and clinical validity of GS to serve as routine first-tier genetic test for patients with NDD. Although the additional diagnostic yield from GS is limited, GS comprehensively identified all variants in a single experiment, suggesting that GS constitutes a more efficient genetic diagnostic workflow.


Subject(s)
Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Genetic Testing/methods , Base Sequence , Chromosome Mapping , Exome Sequencing
9.
Clin Genet ; 102(5): 414-423, 2022 11.
Article in English | MEDLINE | ID: mdl-36053979

ABSTRACT

Early onset drusen maculopathy (EODM) can lead to advanced macular degeneration at a young age, affecting quality of life. However, the genetic causes of EODM are not well studied. We performed whole genome sequencing in 49 EODM patients. Common genetic variants were analysed by calculating genetic risk scores based on 52 age-related macular generation (AMD)-associated variants, and we analysed rare variants in candidate genes to identify potential deleterious variants that might contribute to EODM development. We demonstrate that the 52 AMD-associated variants contributed to EODM, especially variants located in the complement pathway. Furthermore, we identified 26 rare genetic variants predicted to be pathogenic based on in silico prediction tools or based on reported pathogenicity in literature. These variants are located predominantly in the complement and lipid metabolism pathways. Last, evaluation of 18 genes causing inherited retinal dystrophies that can mimic AMD characteristics, revealed 11 potential deleterious variants in eight EODM patients. However, phenotypic characteristics did not point towards a retinal dystrophy in these patients. In conclusion, this study reports new insights into rare variants that are potentially involved in EODM development, and which are relevant for future studies unravelling the aetiology of EODM.


Subject(s)
Complement Factor H , Macular Degeneration , Complement Factor H/genetics , Humans , Macular Degeneration/genetics , Macular Degeneration/pathology , Quality of Life , Whole Genome Sequencing
10.
Sci Rep ; 12(1): 9203, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35655071

ABSTRACT

Size and shape variation of molar crowns in primates plays an important role in understanding how species adapted to their environment. Gorillas are commonly considered to be folivorous primates because they possess sharp cusped molars which are adapted to process fibrous leafy foods. However, the proportion of fruit in their diet can vary significantly depending on their habitats. While tooth morphology can tell us what a tooth is capable of processing, tooth wear can help us to understand how teeth have been used during mastication. The objective of this study is to explore if differences in diet at the subspecies level can be detected by the analysis of molar macrowear. We analysed a large sample of second lower molars of Grauer's, mountain and western lowland gorilla by combining the Occlusal Fingerprint Analysis method with other dental measurements. We found that Grauer's and western lowland gorillas are characterised by a macrowear pattern indicating a larger intake of fruit in their diet, while mountain gorilla's macrowear is associated with the consumption of more folivorous foods. We also found that the consumption of herbaceous foods is generally associated with an increase in dentine and enamel wear, confirming the results of previous studies.


Subject(s)
Gorilla gorilla , Tooth Wear , Animals , Fruit , Mastication , Molar , Tooth Wear/veterinary
11.
Genome Med ; 14(1): 66, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35710456

ABSTRACT

BACKGROUND: Approximately two third of patients with a rare genetic disease remain undiagnosed after exome sequencing (ES). As part of our post-test counseling procedures, patients without a conclusive diagnosis are advised to recontact their referring clinician to discuss new diagnostic opportunities in due time. We performed a systematic study of genetically undiagnosed patients 5 years after their initial negative ES report to determine the efficiency of diverse reanalysis strategies. METHODS: We revisited a cohort of 150 pediatric neurology patients originally enrolled at Radboud University Medical Center, of whom 103 initially remained genetically undiagnosed. We monitored uptake of physician-initiated routine clinical and/or genetic re-evaluation (ad hoc re-evaluation) and performed systematic reanalysis, including ES-based resequencing, of all genetically undiagnosed patients (systematic re-evaluation). RESULTS: Ad hoc re-evaluation was initiated for 45 of 103 patients and yielded 18 diagnoses (including 1 non-genetic). Subsequent systematic re-evaluation identified another 14 diagnoses, increasing the diagnostic yield in our cohort from 31% (47/150) to 53% (79/150). New genetic diagnoses were established by reclassification of previously identified variants (10%, 3/31), reanalysis with enhanced bioinformatic pipelines (19%, 6/31), improved coverage after resequencing (29%, 9/31), and new disease-gene associations (42%, 13/31). Crucially, our systematic study also showed that 11 of the 14 further conclusive genetic diagnoses were made in patients without a genetic diagnosis that did not recontact their referring clinician. CONCLUSIONS: We find that upon re-evaluation of undiagnosed patients, both reanalysis of existing ES data as well as resequencing strategies are needed to identify additional genetic diagnoses. Importantly, not all patients are routinely re-evaluated in clinical care, prolonging their diagnostic trajectory, unless systematic reanalysis is facilitated. We have translated our observations into considerations for systematic and ad hoc reanalysis in routine genetic care.


Subject(s)
Exome , Rare Diseases , Child , Genetic Testing/methods , Humans , Rare Diseases/genetics , Sequence Analysis, DNA , Exome Sequencing/methods , Workflow
12.
NPJ Genom Med ; 7(1): 37, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672333

ABSTRACT

The USH2A variant c.2276 G > T (p.(Cys759Phe)) has been described by many authors as a frequent cause of autosomal recessive retinitis pigmentosa (arRP). However, this is in contrast with the description of two asymptomatic individuals homozygous for this variant. We therefore assessed pathogenicity of the USH2A c.2276 G > T variant using extensive genetic and functional analyses. Whole genome sequencing and optical genome mapping were performed for three arRP cases homozygous for USH2A c.2276 G > T to exclude alternative genetic causes. A minigene splice assay was designed to investigate the effect of c.2276 G > T on pre-mRNA splicing, in presence or absence of the nearby c.2256 T > C variant. Moreover, an ush2ap.(Cys771Phe) zebrafish knock-in model mimicking human p.(Cys759Phe) was generated and characterized using functional and immunohistochemical analyses. Besides the homozygous c.2276 G > T USH2A variant, no alternative genetic causes were identified. Evaluation of the ush2ap.(Cys771Phe) zebrafish model revealed strongly reduced levels of usherin expression at the photoreceptor periciliary membrane, increased levels of rhodopsin localization in the photoreceptor cell body and decreased electroretinogram (ERG) b-wave amplitudes compared to wildtype controls. In conclusion, we confirmed pathogenicity of USH2A c.2276 G > T (p.(Cys759Phe)). Consequently, cases homozygous for c.2276 G > T can now receive a definite genetic diagnosis and can be considered eligible for receiving future QR-421a-mediated exon 13 skipping therapy.

13.
Proc Biol Sci ; 289(1969): 20212564, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35193404

ABSTRACT

Mountain gorillas are particularly inbred compared to other gorillas and even the most inbred human populations. As mountain gorilla skeletal material accumulated during the 1970s, researchers noted their pronounced facial asymmetry and hypothesized that it reflects a population-wide chewing side preference. However, asymmetry has also been linked to environmental and genetic stress in experimental models. Here, we examine facial asymmetry in 114 crania from three Gorilla subspecies using 3D geometric morphometrics. We measure fluctuating asymmetry (FA), defined as random deviations from perfect symmetry, and population-specific patterns of directional asymmetry (DA). Mountain gorillas, with a current population size of about 1000 individuals, have the highest degree of facial FA (explaining 17% of total facial shape variation), followed by Grauer gorillas (9%) and western lowland gorillas (6%), despite the latter experiencing the greatest ecological and dietary variability. DA, while significant in all three taxa, explains relatively less shape variation than FA does. Facial asymmetry correlates neither with tooth wear asymmetry nor increases with age in a mountain gorilla subsample, undermining the hypothesis that facial asymmetry is driven by chewing side preference. An examination of temporal trends shows that stress-induced developmental instability has increased over the last 100 years in these endangered apes.


Subject(s)
Gorilla gorilla , Hominidae , Animals , Facial Asymmetry/veterinary , Genetic Variation , Gorilla gorilla/genetics , Humans
14.
Sci Rep ; 11(1): 6879, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833252

ABSTRACT

Acoustic signals that reliably indicate body size, which usually determines competitive ability, are of particular interest for understanding how animals assess rivals and choose mates. Whereas body size tends to be negatively associated with formant dispersion in animal vocalizations, non-vocal signals have received little attention. Among the most emblematic sounds in the animal kingdom is the chest beat of gorillas, a non-vocal signal that is thought to be important in intra and inter-sexual competition, yet it is unclear whether it reliably indicates body size. We examined the relationship among body size (back breadth), peak frequency, and three temporal characteristics of the chest beat: duration, number of beats and beat rate from sound recordings of wild adult male mountain gorillas. Using linear mixed models, we found that larger males had significantly lower peak frequencies than smaller ones, but we found no consistent relationship between body size and the temporal characteristics measured. Taken together with earlier findings of positive correlations among male body size, dominance rank and reproductive success, we conclude that the gorilla chest beat is an honest signal of competitive ability. These results emphasize the potential of non-vocal signals to convey important information in mammal communication.


Subject(s)
Body Size , Competitive Behavior , Gorilla gorilla/physiology , Reproduction , Thorax/physiology , Vocalization, Animal/physiology , Acoustics , Animals , Male
15.
JAMA ; 324(7): 663-673, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32706371

ABSTRACT

Importance: Severe coronavirus disease 2019 (COVID-19) can occur in younger, predominantly male, patients without preexisting medical conditions. Some individuals may have primary immunodeficiencies that predispose to severe infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To explore the presence of genetic variants associated with primary immunodeficiencies among young patients with COVID-19. Design, Setting, and Participants: Case series of pairs of brothers without medical history meeting the selection criteria of young (age <35 years) brother pairs admitted to the intensive care unit (ICU) due to severe COVID-19. Four men from 2 unrelated families were admitted to the ICUs of 4 hospitals in the Netherlands between March 23 and April 12, 2020. The final date of follow-up was May 16, 2020. Available family members were included for genetic variant segregation analysis and as controls for functional experiments. Exposure: Severe COVID-19. Main Outcome and Measures: Results of rapid clinical whole-exome sequencing, performed to identify a potential monogenic cause. Subsequently, basic genetic and immunological tests were performed in primary immune cells isolated from the patients and family members to characterize any immune defects. Results: The 4 male patients had a mean age of 26 years (range, 21-32), with no history of major chronic disease. They were previously well before developing respiratory insufficiency due to severe COVID-19, requiring mechanical ventilation in the ICU. The mean duration of ventilatory support was 10 days (range, 9-11); the mean duration of ICU stay was 13 days (range, 10-16). One patient died. Rapid clinical whole-exome sequencing of the patients and segregation in available family members identified loss-of-function variants of the X-chromosomal TLR7. In members of family 1, a maternally inherited 4-nucleotide deletion was identified (c.2129_2132del; p.[Gln710Argfs*18]); the affected members of family 2 carried a missense variant (c.2383G>T; p.[Val795Phe]). In primary peripheral blood mononuclear cells from the patients, downstream type I interferon (IFN) signaling was transcriptionally downregulated, as measured by significantly decreased mRNA expression of IRF7, IFNB1, and ISG15 on stimulation with the TLR7 agonist imiquimod as compared with family members and controls. The production of IFN-γ, a type II IFN, was decreased in patients in response to stimulation with imiquimod. Conclusions and Relevance: In this case series of 4 young male patients with severe COVID-19, rare putative loss-of-function variants of X-chromosomal TLR7 were identified that were associated with impaired type I and II IFN responses. These preliminary findings provide insights into the pathogenesis of COVID-19.


Subject(s)
COVID-19/virology , Loss of Function Mutation , SARS-CoV-2/genetics , Adult , Enzyme-Linked Immunosorbent Assay , Fatal Outcome , Hospitalization , Humans , Intensive Care Units , Leukocytes, Mononuclear , Male , Netherlands , Pedigree , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Young Adult
16.
PLoS One ; 15(6): e0233235, 2020.
Article in English | MEDLINE | ID: mdl-32492071

ABSTRACT

According to life history theory, natural selection has shaped trade-offs for allocating energy among growth, reproduction and maintenance to maximize individual fitness. In social mammals body size and dominance rank are two key variables believed to influence female reproductive success. However, few studies have examined these variables together, particularly in long-lived species. Previous studies found that female dominance rank correlates with reproductive success in mountain gorillas (Gorilla beringei beringei), which is surprising given they have weak dominance relationships and experience seemingly low levels of feeding competition. It is not currently known whether this relationship is primarily driven by a positive correlation between rank and body size. We used the non-invasive parallel laser method to measure two body size variables (back breadth and body length) of 34 wild adult female mountain gorillas, together with long-term dominance and demography data to investigate the interrelationships among body size, dominance rank and two measures of female reproductive success (inter-birth interval N = 29 and infant mortality N = 64). Using linear mixed models, we found no support for body size to be significantly correlated with dominance rank or female reproductive success. Higher-ranking females had significantly shorter inter-birth intervals than lower-ranking ones, but dominance rank was not significantly correlated with infant mortality. Our results suggest that female dominance rank is primarily determined by factors other than linear body dimensions and that high rank provides benefits even in species with weak dominance relationships and abundant year-round food resources. Future studies should focus on the mechanisms behind heterogeneity in female body size in relation to trade-offs in allocating energy to growth, maintenance and lifetime reproductive success.


Subject(s)
Gorilla gorilla/physiology , Gorilla gorilla/psychology , Reproduction/physiology , Social Dominance , Animals , Body Size , Dominance-Subordination , Female , Gorilla gorilla/anatomy & histology , Male , Models, Biological , Models, Psychological , Multivariate Analysis , Pregnancy , Rwanda , Species Specificity
17.
Hum Mutat ; 40(11): 1993-2000, 2019 11.
Article in English | MEDLINE | ID: mdl-31230393

ABSTRACT

Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Retroelements , Adolescent , Adult , Aged , Child , Child, Preschool , Diagnostic Tests, Routine , Female , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Young Adult
18.
J Morphol ; 280(1): 20-34, 2019 01.
Article in English | MEDLINE | ID: mdl-30556948

ABSTRACT

Molars are highly integrated biological structures that have been used for inferring evolutionary relationships among taxa. However, parallel and convergent morphological traits can be affected by developmental and functional constraints. Here, we analyze molar shapes of platyrrhines in order to explore if platyrrhine molar diversity reflects homogeneous patterns of molar variation and covariation. We digitized 30 landmarks on mandibular first and second molars of 418 extant and 11 fossil platyrrhine specimens to determine the degree of integration of both molars when treated as a single module. We combined morphological and phylogenetic data to investigate the phylogenetic signal and to visualize the history of molar shape changes. All platyrrhine taxa show a common shape pattern suggesting that a relatively low degree of phenotypic variation is caused by convergent evolution, although molar shape carries significant phylogenetic signal. Atelidae and Pitheciidae show high levels of integration with low variation between the two molars, whereas the Cebinae/Saimiriinae, and especially Callitrichinae, show greater variation between molars and trend toward a modular organization. We hypothesize that biomechanical constraints of the masticatory apparatus, and the dietary profile of each taxon are the main factors that determine high covariation in molars. In contrast, low molar shape covariation may result from the fact that each molar exhibits a distinct ecological signal, as molars can be exposed to distinct occlusal loadings during food processing, suggesting that different selective pressures on molars can reduce overall molar integration.


Subject(s)
Mandible/anatomy & histology , Molar/anatomy & histology , Primates/anatomy & histology , Anatomic Landmarks , Animals , Body Size , Fossils , Phylogeny , Principal Component Analysis
19.
Am J Phys Anthropol ; 167(4): 930-935, 2018 12.
Article in English | MEDLINE | ID: mdl-30368801

ABSTRACT

OBJECTIVES: Ecological factors, but also tooth-to-tooth contact over time, have a dramatic effect on tooth wear in primates. The aim of this study is to test whether incisor tooth wear changes predictably with age and can thus be used as an age estimation method in a wild population of mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda. MATERIALS AND METHODS: In mountain gorillas of confidently known chronological age (N = 24), we measured the crown height of all permanent maxillary and mandibular incisors (I1 , I1 , I2 , I2 ) as a proxy for incisal macrowear. Linear and quadratic regressions for each incisor were used to test whether age can be predicted by crown height. Using these models, we then predicted age at death of two individual mountain gorillas of probable identifications, based on their incisor crown height. RESULTS: Age decreased significantly with incisor height for all teeth, but the upper first incisors (I1 ) provided the best results, with the lowest Akaike's Information Criterion corrected for small sample size (AICc) and lowest Standard Error of the Estimate (SEE). When the best age equations for each sex were applied to gorillas with probable identifications, the predicted ages differed 1.58 and 3.33 years from the probable ages of these individuals. CONCLUSIONS: Our findings corroborate that incisor crown height, a proxy for incisal wear, varies predictably with age. This relationship can be used to estimate age at death of unknown gorillas in the skeletal collection, and in some cases, to corroborate the identity of individual gorillas recovered from the forest postmortem at an advanced state of decomposition. Such identifications help fill gaps in the demographic database and support research that requires individual-level data.


Subject(s)
Age Determination by Teeth , Gorilla gorilla/anatomy & histology , Incisor , Tooth Wear/pathology , Age Determination by Teeth/methods , Age Determination by Teeth/veterinary , Aging/physiology , Animals , Anthropology, Physical , Female , Incisor/anatomy & histology , Incisor/pathology , Male , Regression Analysis , Rwanda , Tooth Crown/anatomy & histology
20.
Am J Phys Anthropol ; 165(1): 123-138, 2018 01.
Article in English | MEDLINE | ID: mdl-28991380

ABSTRACT

OBJECTIVES: Dental microwear is a promising tool to reconstruct animals' diet because it reflects the interplay between the enamel surface and the food items recently consumed. This study examines the sources of inter-individual variations in dietary habits in a free-ranging population of mandrills (Mandrillus sphinx) using a combination of feeding monitoring and in vivo dental microwear textural analysis (DMTA). METHODS: We investigated the impact of seasonality and individual traits on four DMTA parameters. In parallel, we further studied the influence of the physical properties of the food items consumed on these four parameters, using three proxies (mechanical properties, estimates of phytolith and external grit contents). RESULTS: We found that seasonality, age, and sex all impact DMTA parameters but those results differ depending on the facet analyzed (crushing vs. shearing facets). Three DMTA parameters (anisotropy, complexity, and heterogeneity of complexity) appear sensitive to seasonal variations and anisotropy also differs between the sexes while textural fill volume tends to vary with age. Moreover, the physical properties of the food items consumed vary seasonally and also differ depending on individual sex and age. CONCLUSION: Considering the interplay between the tested variables and both dental microwear and diet, we reaffirm that food physical properties play a major role in microwear variations. These results suggest that DMTA parameters may provide valuable hints for paleoecological reconstruction using fragmentary fossil dental remains.


Subject(s)
Diet/veterinary , Mandrillus/anatomy & histology , Mandrillus/physiology , Tooth Wear/diagnostic imaging , Tooth Wear/pathology , Tooth/diagnostic imaging , Tooth/pathology , Animals , Anthropology, Physical , Feeding Behavior/physiology , Female , Male , Masseter Muscle/physiology , Models, Dental , Parotid Gland/physiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL