Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Heliyon ; 10(17): e37037, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281427

ABSTRACT

Food plant diversity in bioactive compounds makes them an exploitable resource in the search for effective natural products to prevent or treat viral infections. Therefore, in the framework aimed at studying the antiviral properties of extractive mixtures from fruits (and their waste) grown in the Campania Region (Italy), jujube drupes (Zizyphus jujuba Mill.) were our focus. The drupes were dissected into their peel, pulp and seed parts, each of which was extracted by ultrasound-assisted maceration and further fractionated, thus obtaining, beyond the sugar fraction, a polyphenolic fraction and a lipid fraction. UHPLC-HR MS/MS tools highlighted that the polyphenolic component of the seed was strongly dissimilar from that of the edible parts, being constituted by swertisin and its derivatives. Moreover, the peel mostly accounted for triglycosylated flavonols, whereas the pulp was rich in volatile aromatic glycosides. Among lipids, p-coumaroyl triterpenes mainly characterized the peel. All fractions were screened for their cytotoxicity, and non-toxic concentrations of each extract were tested against herpes simplex virus type 1 (HSV-1) by plaque assays. Molecular tests and Western blot analyses were also carried out. The jujube mixtures, in detail the peel and pulp polyphenolic fractions, and peel lipophilic fraction (the latter enriched mainly in ursane-type triterpenes), showed a marked inhibitory activity against HSV-1 acting in the early stages of viral infection and preventing attachment of the virus to the host cell. The acquired data suggest jujube active mixtures as promising candidates for the prevention and treatment of herpetic lesions.

2.
Virus Res ; 349: 199455, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39181453

ABSTRACT

The growing threat of viral infections requires innovative therapeutic approaches to safeguard human health. Nanomaterials emerge as a promising solution to overcome the limitations associated with conventional therapies. The eco-friendly synthesis of silver nanoparticles (AgNPs) currently represents a method that guarantees antimicrobial efficacy, safety, and cost-effectiveness. This study explores the use of AgNPs derived from the peel (Lp-AgNPs) and juice (Lj-AgNPs) Citrus limon "Ovale di Sorrento", cultivars of the Campania region. The antiviral potential was tested against viruses belonging to the Coronaviridae and Herpesviridae. AgNPs were synthesized by reduction method using silver nitrate solution mixed with aqueous extract of C. limon peel and juice. The formation of Lp-AgNPs and Lj-AgNPs was assessed using a UV-Vis spectrophotometer. The size, ζ-potential, concentration, and morphology of AgNPs were evaluated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and field emission-scanning electron microscopy (FE-SEM). Cytotoxicity was evaluated in a concentration range between 500 and 7.8 µg/mL on VERO-76 and HaCaT cells, with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test bromide (MTT). Antiviral activity consisted of virus pre-treatment, co-treatment, cellular pre-treatment, and post-infection tests versus HSV-1 and SARS-CoV-2 at a multiplicity of infections (MOI) of 0.01. Plaque reduction assays and real-time PCR provided data on the antiviral potential of tested compounds. Lp-AgNPs and Lj-AgNPs exhibited spherical morphology with respective diameters of 60 and 92 nm with concentrations of 4.22 and 4.84 × 1010 particles/mL, respectively. The MTT data demonstrated minimal cytotoxicity, with 50 % cytotoxic concentrations (CC50) of Lp-AgNPs and Lj-AgNPs against VERO cells of 754.6 and 486.7 µg/mL. Similarly, CC50 values against HaCaT were 457.3 µg/mL for Lp-AgNPs and 339.6 µg/mL for Lj-AgNPs, respectively. In the virus pre-treatment assay, 90 % inhibitory concentrations of HSV-1 and SARS-CoV-2 were 8.54-135.04 µg/mL for Lp-AgNPs and 6.13-186.77 µg/mL for Lj-AgNPs, respectively. The molecular investigation confirmed the antiviral data, recording a reduction in the UL54 and UL27 genes for HSV-1 and in the Spike (S) gene for SARS-CoV-2, following AgNP exposure. The results of this study suggest that Lp-AgNPs and Lj-AgNPs derived from C. Limon could offer a valid ecological, natural, local and safe strategy against viral infections.


Subject(s)
Antiviral Agents , Herpesvirus 1, Human , Metal Nanoparticles , SARS-CoV-2 , Silver , Herpesvirus 1, Human/drug effects , Metal Nanoparticles/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Silver/pharmacology , Silver/chemistry , SARS-CoV-2/drug effects , Humans , Animals , Vero Cells , Chlorocebus aethiops , Citrus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Green Chemistry Technology , Fruit and Vegetable Juices/analysis , COVID-19/virology , Cell Survival/drug effects
3.
Microb Pathog ; 194: 106835, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117014

ABSTRACT

Candida albicans is an opportunistic yeast accounting for about 50-90 % of all cases of candidiasis in humans, ranging from superficial to systemic potentially life-threatening infections. The presence of several virulence factors, including biofilm, hyphal transition, and proteolytic enzymes production, worsens the fungal infections burden on healthcare system resources. Hence, developing new bioactive compounds with antifungal activity is a pressing urgence for the scientific community. In this perspective, we evaluated the anti-Candida potential of the N-Nitroso-N-phenylhydroxylamine ammonium salt (cupferron) against standard and clinical C. albicans strains. Firstly, the in vitro cytotoxicity of cupferron was checked in the range 400-12.5 µg/mL against human microglial cells (HMC-3). Secondly, its antifungal spectrum was explored via disk diffusion test, broth-microdilution method, and time-killing curve analysis, validating the obtained results through scanning electron microscopy (SEM) observations. Additionally, we evaluated the cupferron impact on the main virulence determinants of Candida albicans. At non-toxic concentrations (100-12.5 µg/mL), the compound exerted interesting anti-Candida activity, registering a minimum inhibitory concentration (MIC) between 50 and 100 µg/mL against the tested strains, with a fungistatic effect until 100 µg/mL. Furthermore, cupferron was able to counteract fungal virulence at MIC and sub-MIC values (50-12.5 µg/mL). These findings may propose cupferron as a new potential antifungal option for the treatment of Candida albicans infections.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Microbial Sensitivity Tests , Candida albicans/drug effects , Antifungal Agents/pharmacology , Humans , Biofilms/drug effects , Candidiasis/microbiology , Candidiasis/drug therapy , Virulence Factors , Cell Line , Hyphae/drug effects , Microscopy, Electron, Scanning , Virulence/drug effects , Fungal Proteins/metabolism
4.
Viruses ; 16(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39205173

ABSTRACT

Moringa oleifera (M. oleifera) is a plant widely used for its beneficial properties both in medical and non-medical fields. Because they produce bioactive metabolites, plants are a major resource for drug discovery. In this study, two different cultivars of leaves of M. oleifera (Salento and Barletta) were obtained by maceration or microwave-assisted extraction (MAE). We demonstrated that extracts obtained by MAE exhibited a lower cytotoxic profile compared to those obtained by maceration at concentrations ranged from 25 to 400 µg/mL, on both Vero CCL-81 and Vero/SLAM cells. We examined their antiviral properties against two viruses, i.e., the human coronavirus 229E (HCoV-229E) and measles virus (MeV), which are both responsible for respiratory infections. The extracts were able to inhibit the infection of both viruses and strongly prevented their attack and entry into the cells in a range of concentrations from 50 to 12 µg/mL. Particularly active was the variety of Salento that registered a 50% inhibitory concentration (IC50) at 21 µg/mL for HCoV-229E and at 6 µg/mL for MeV. We identified the presence of several compounds through high performance liquid chromatography (HPLC); in particular, chlorogenic and neochlorogenic acids, quercetin 3-O-ß-d-glucopyranoside (QGP), and glucomoringin (GM) were mainly observed. In the end, M. oleifera can be considered a promising candidate for combating viral infections with a very strong action in the early stages of viral life cycle, probably by destructuring the viral particles blocking the virus-cell fusion.


Subject(s)
Antiviral Agents , Moringa oleifera , Plant Extracts , Plant Leaves , Moringa oleifera/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Chlorocebus aethiops , Vero Cells , Animals , Measles virus/drug effects , Coronavirus 229E, Human/drug effects , Humans , Inhibitory Concentration 50 , Cell Survival/drug effects
5.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38991986

ABSTRACT

AIM: The high incidence of virus-related infections and the large diffusion of drug-resistant pathogens stimulate the search and identification of new antiviral agents with a broad spectrum of action. Antivirals can be designed to act on a single target by interfering with a specific step in the viral lifecycle. On the contrary, antiviral peptides (AVPs) are known for acting on a wide range of viruses, with a diversified mechanism of action targeting virus and/or host cell. In the present study, we evaluated the antiviral potential of the peptide Hylin-a1 secreted by the frog Hypsiobas albopunctatus against members of the Herpesviridae family. METHODS AND RESULTS: The inhibitory capacity of the peptide was evaluated in vitro by plaque assays in order to understand the possible mechanism of action. The results were also confirmed by real-time PCR and Western blot evaluating the expression of viral genes. Hylin-a1 acts to block the herpetic infection interfering at the early stages of both herpes simplex virus type 1 (HSV-1) and type 2 infection. Its mechanism is mainly directed on the membrane, probably by damaging the viral envelope. The same effect was also observed against HSV-1 strains resistant to acyclovir. CONCLUSIONS: The data presented in this study, such as the increased activity of the peptide when combined to acyclovir, a weak hemolytic profile, an anti-inflammatory effect, and a tolerable half-life in serum, indicates Hylin-a1 as a novel antiherpetic molecule with promising potential in the clinical setting.


Subject(s)
Anti-Inflammatory Agents , Antiviral Agents , Anura , Animals , Antiviral Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Herpesvirus 1, Human/drug effects , Amphibian Proteins/pharmacology , Peptides/pharmacology , Vero Cells , Chlorocebus aethiops
6.
New Microbiol ; 47(2): 164-171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023526

ABSTRACT

The study objective is to examine epidemiological and microbiological aspects of aerobic vaginitis in female patients admitted to University Hospital of Campania "L. Vanvitelli" over five years. The most represented strains were E. coli (n = 153), Citrobacter spp. increasing from 2020, E. faecalis (n = 149), S. haemolitycus (n = 61), and Candida albicans (n = 87). The susceptibility patterns of a selection of gram-negative and gram-positive representative bacterial isolates were examined. Carbapenems, aminoglycosides, and fosfomycin were most effective against gram-negative bacteria, whereas vancomycin, daptomycin, and linezolid exhibited greater efficacy against gram-positive bacteria. None of the E. coli and Citrobacter spp. isolates produced extended-spectrum beta-lactamases, and the S. haemolyticus strains were methicillin-resistant. In gram-positive isolates, gentamicin susceptibility increased in 2020 and 2021 compared to clindamycin; erythromycin showed high resistance rates in 2020. Our findings indicate that integrating proper microbiological cultures into clinical practice could improve the management of aerobic vaginitis. Moreover, they highlight the necessity of establishing a nationwide surveillance guideline to mitigate antimicrobial resistance. Improvement actions in antimicrobial diagnostic stewardship must be considered when seeking the appropriate diagnosis and treatment for aerobic vaginitis.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Stewardship , Microbial Sensitivity Tests , Female , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Adult , Drug Resistance, Bacterial , Middle Aged , Vaginosis, Bacterial/microbiology , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/diagnosis , Young Adult , Vaginitis/microbiology , Vaginitis/drug therapy
7.
J Transl Med ; 22(1): 574, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886736

ABSTRACT

BACKGROUND: The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS: Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS: Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION: The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.


Subject(s)
Antiviral Agents , COVID-19 , Immunity, Innate , SARS-CoV-2 , Humans , Immunity, Innate/drug effects , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Anti-Infective Agents/pharmacology , Polyphenols/pharmacology , Dietary Supplements
8.
Can J Infect Dis Med Microbiol ; 2024: 5548434, 2024.
Article in English | MEDLINE | ID: mdl-38698837

ABSTRACT

Infections caused by antibiotic-resistant bacteria represent a serious threat to global public health. Recently, due to its increased resistance to carbapenems and ß-lactams, Klebsiella pneumoniae has become one of the main causes of septicemia, pneumonia, and urinary tract infections. It is crucial to take immediate action and implement effective measures to prevent further spread of this issue. This study aims to report the prevalence and antibiotic resistance rates of K. pneumoniae strains isolated from clinical specimens from 2015 to 2020 at the University Hospital of Salerno, Italy. More than 3,800 isolates were collected from urine cultures, blood cultures, respiratory samples, and others. K. pneumoniae isolates showed broad resistance to penicillin and cephalosporins, and increased susceptibility to fosfomycin and gentamicin. Extended spectrum beta-lactamase (ESBL) isolates accounted for 20-22%. A high percentage of strains tested were resistant to carbapenems, with an average of 40% to meropenem and 44% to ertapenem. The production of ESBLs and resistance to carbapenems is one of the major public health problems. Constant monitoring of drug-resistant isolates is crucial for developing practical approaches in implementing antimicrobial therapy and reducing the spread of K. pneumoniae in nosocomial environments.

9.
Materials (Basel) ; 17(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793245

ABSTRACT

Metal and metal oxide nanostructured materials have been chemically and physically characterized and tested concerning methylene blue (MB) photoremoval and UV antibacterial activity against Escherichia coli and Staphylococcus aureus. In detail, silver nanoparticles and commercial BaTiO3 nanoparticles were modified to obtain nanocomposites through sonicated sol-gel TiO2 synthesis and the photodeposition of Ag nanoparticles, respectively. The characterization results of pristine nanomaterials and synthetized photocatalysts revealed significant differences in specific surface area (SSA), the presence of impurities in commercial Ag nanoparticles, an anatase phase with brookite traces for TiO2-based nanomaterials, and a mixed cubic-tetragonal phase for BaTiO3. Silver nanoparticles exhibited superior antibacterial activity at different dosages; however, they were inactive in the photoremoval of the dye. The silver-TiOx nanocomposite demonstrated an activity in the UV photodegradation of MB and UV inhibition of bacterial growth. Specifically, TiO2/AgNP (30-50 nm) reduced growth by 487.5 and 1.1 × 103 times for Escherichia coli and Staphylococcus aureus, respectively, at a dose of 500 µg/mL under UV irradiation.

10.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793547

ABSTRACT

Severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) has infected more than 762 million people to date and has caused approximately 7 million deaths all around the world, involving more than 187 countries. Although currently available vaccines show high efficacy in preventing severe respiratory complications in infected patients, the high number of mutations in the S proteins of the current variants is responsible for the high level of immune evasion and transmissibility of the virus and the reduced effectiveness of acquired immunity. In this scenario, the development of safe and effective drugs of synthetic or natural origin to suppress viral replication and treat acute forms of COVID-19 remains a valid therapeutic challenge. Given the successful history of flavonoids-based drug discovery, we developed esters of substituted cinnamic acids with quercetin to evaluate their in vitro activity against a broad spectrum of Coronaviruses. Interestingly, two derivatives, the 3,4-methylenedioxy 6 and the ester of acid 7, have proved to be effective in reducing OC43-induced cytopathogenicity, showing interesting EC50s profiles. The ester of synaptic acid 7 in particular, which is not endowed with relevant cytotoxicity under any of the tested conditions, turned out to be active against OC43 and SARS-CoV-2, showing a promising EC50. Therefore, said compound was selected as the lead object of further analysis. When tested in a yield reduction, assay 7 produced a significant dose-dependent reduction in viral titer. However, the compound was not virucidal, as exposure to high concentrations of it did not affect viral infectivity, nor did it affect hCoV-OC43 penetration into pre-treated host cells. Additional studies on the action mechanism have suggested that our derivative may inhibit viral endocytosis by reducing viral attachment to host cells.


Subject(s)
Antiviral Agents , Cinnamates , Esters , Quercetin , SARS-CoV-2 , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Cinnamates/pharmacology , Cinnamates/chemistry , Esters/pharmacology , Esters/chemistry , Humans , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , COVID-19 Drug Treatment , Chlorocebus aethiops , Vero Cells , COVID-19/virology , Cell Line
11.
IDCases ; 36: e01959, 2024.
Article in English | MEDLINE | ID: mdl-38681078

ABSTRACT

Magnusiomyces capitatus (M. capitatus) is an emerging opportunistic yeast in the Mediterranean region typically isolated from immunocompromised patients, usually affected by blood malignancies. We reported a rare case of M. capitatus infection, isolated from a drainage fluid in a patient affected by lung cancer recovered in the University Hospital of Campania "Luigi Vanvitelli", Naples, Italy. The isolate was identified by phenotypic methods, i.e., Gram and Lactophenol cotton blue (LCB) staining, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. We identified M. capitatus on the third day from Sabouraud Dextrose Agar supplemented with chloramphenicol and gentamicin. Antifungal susceptibility test revealed that 5-fluorocytosine was the most active drug against M. capitatus, followed by itraconazole and voriconazole, micafungin, amphotericin B and fluconazole, posaconazole, anidulafungin, and caspofungin. Our data showed the importance of an early cultural and fast microbiology diagnosis based on the characteristic morphologic features observed in Gram-stained smears of blood culture positive bottles, and the validation via MALDI-TOF MS. This dual approach has significant impact in the clinical management of infectious diseases and antibiotic stewardship, by integrating sample processing, fluid handling, and detection for rapid bacterial diagnosis.

12.
Antibiotics (Basel) ; 13(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38666999

ABSTRACT

The spread of antibiotic resistance represents a serious worldwide public health issue, underscoring the importance of epidemiology research in determining antimicrobial strategies. The purpose of this research was to investigate antibiotic resistance in Serratia marcescens isolates from clinical samples over seven years at the University Hospital "San Giovanni di Dio e Ruggi d'Aragona" in Salerno, Italy. S. marcescens is an important opportunistic pathogen associated with a wide spectrum of clinical diseases, including pneumonia, keratitis, meningitis, and urinary tract and wound infections. Outbreaks of nosocomial infections by S. marcescens strains have been documented in high-risk settings, mainly affecting immunocompromised patients and newborns. The primary objective of this study is to assess the rates of antibiotic resistance over the years to deal with a future emergency which includes the failure of various therapies due to antibiotic resistance. During the investigation, a total of 396 species of S. marcescens were isolated from various clinical samples, mainly from broncho-aspirates and sputum (31.6%) and blood cultures (21.5%). Antibiotics that showed the greatest susceptibility included ceftazidime/avibactam, amikacin, trimethoprim/sulfamethoxazole, and selected members of the cephalosporin class. However, a disconcerting trend of increasing rates of carbapenem resistance was outlined over the observation period. The absence of effective countermeasures, combined with growing antibiotic resistance that negates the effectiveness of multiple antibiotics, highlights the potential for S. marcescens infections to trigger serious clinical complications and increased mortality rates. The surveillance of Serratia marcescens infections constitutes a pivotal element in refining empiric therapy to mitigate the dissemination of antimicrobial resistance.

13.
Microorganisms ; 12(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674764

ABSTRACT

The spread of antibiotic-resistant bacteria and the rise of emerging and re-emerging viruses in recent years constitute significant public health problems. Therefore, it is necessary to develop new antimicrobial strategies to overcome these challenges. Herein, we describe an innovative method to synthesize ligand-free silver nanoparticles by Pulsed Laser Ablation in Liquid (PLAL-AgNPs). Thus produced, nanoparticles were characterized by total X-ray fluorescence, zeta potential analysis, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the nanoparticles' cytotoxicity. Their potential was evaluated against the enveloped herpes simplex virus type 1 (HSV-1) and the naked poliovirus type 1 (PV-1) by plaque reduction assays and confirmed by real-time PCR and fluorescence microscopy, showing that nanoparticles interfered with the early stage of infection. Their action was also examined against different bacteria. We observed that the PLAL-AgNPs exerted a strong effect against both methicillin-resistant Staphylococcus aureus (S. aureus MRSA) and Escherichia coli (E. coli) producing extended-spectrum ß-lactamase (ESBL). In detail, the PLAL-AgNPs exhibited a bacteriostatic action against S. aureus and a bactericidal activity against E. coli. Finally, we proved that the PLAL-AgNPs were able to inhibit/degrade the biofilm of S. aureus and E. coli.

14.
Nat Prod Res ; : 1-14, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557224

ABSTRACT

The discovery of natural molecules with antimicrobial properties has become an urgent need for the global treatment of bacterium and virus infections. Cistus incanus, a Mediterranean shrub species, represents a valuable source of phytochemicals with an interesting wide-spectrum antimicrobial potential. In this study, we analysed the spectrum of molecules composing a commercial hydroalcoholic extract of C. incanus finding ellagitannins as the most abundant. The effect of the extract and its main constituents (gallic acid, ellagic acid and punicalin) was assessed as co-treatment during viral (HSV-1, HCoV-229E, SARS-CoV-2) and bacterial infection (Staphylococcus aureus and Escherichia coli) of cells and as pre-treatment before virus infections. The results indicated a remarkable antiviral activity of punicalin against SARS-CoV-2 by pre-treating both the viral and the host cells, and a major sensitivity of S. aureus to the C. incanus extract compared to E. coli. The present study highlights broad antimicrobial potential of C. incanus extract.

15.
Heliyon ; 10(8): e29017, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644830

ABSTRACT

The programmed cell death pathways of apoptosis are important in mammalian cellular protection from infections. The activation of these pathways depends on the presence of membrane receptors that bind bacterial components to activate the transduction mechanism. In addition to bacteria, these mechanisms can be activated by outer membrane vesicles (OMVs). OMVs are spherical vesicles of 20-250 nm diameter, constitutively released by Gram-negative bacteria. They contain several bacterial determinants including proteins, DNA/RNA and proteins, that activate different cellular processes in host cells. This study focused on Klebsiella pneumoniae-OMVs in activating death mechanisms in human bronchial epithelial cells (BEAS-2B). Characterization of purified OMVs was achieved by scanning electron microscopy, nanoparticle tracking analysis and protein profiling. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while apoptotic induction was measured by flow cytometry and confirmed by western blotting. The OMVs produced showed a spherical morphology, with a diameter of 137.2 ± 41 nm and a vesicular density of 7.8 × 109 particles/mL Exposure of cell monolayers to 50 µg of K. pneumoniae-OMV for 14 h resulted in approximately 25 % cytotoxicity and 41.15-41.14 % of cells undergoing early and late apoptosis. Fluorescence microscopy revealed reduced cellular density, the presence of apoptotic bodies, chromatin condensation, and nuclear membrane blebbing in residual cells. Activation of caspases -3 and -9 and dysregulation of BAX, BIM and Bcl-xL indicated the activation of mitochondria-dependent apoptosis. Furthermore, a decrease in the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase involved endoplasmic reticulum stress with the potential formation of reactive oxygen species. These findings provide evidence for the role of OMVs in apoptosis and involvement in the pathogenesis of K. pneumoniae infections.

16.
J Pept Sci ; 30(7): e3593, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38471710

ABSTRACT

In recent decades, the global rise of viral emerging infectious diseases has posed a substantial threat to both human and animal health worldwide. The rapid spread and accumulation of mutations into viruses, and the limited availability of antiviral drugs and vaccines, stress the urgent need for alternative therapeutic strategies. Antimicrobial peptides (AMPs) derived from natural sources present a promising avenue due to their specificity and effectiveness against a broad spectrum of pathogens. The present study focuses on investigating the antiviral potential of oreochromicin-1 (oreoch-1), a fish-derived AMP obtained from Nile tilapia, against a wide panel of animal viruses including canine distemper virus (CDV), Schmallenberg virus (SBV), caprine herpesvirus 1 (CpHV-1), and bovine herpesvirus 1 (BoHV-1). Oreoch-1 exhibited a strong antiviral effect, demonstrating an inhibition of infection at concentrations in the micromolar range. The mechanism of action involves the interference with viral entry into host cells and a direct interaction between oreoch-1 and the viral envelope. In addition, we observed that the peptide could also interact with the cell during the CDV infection. These findings not only highlight the efficacy of oreoch-1 in inhibiting viral infection but also emphasize the potential of fish-derived peptides, specifically oreoch-1, as effective antiviral agents against viral infections affecting animals, whose potential to spill into humans is high. This research contributes valuable insights to the ongoing quest for novel antiviral drugs with the potential to mitigate the impact of infectious diseases on a global scale.


Subject(s)
Antiviral Agents , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , Microbial Sensitivity Tests , Chlorocebus aethiops , Virus Internalization/drug effects
17.
Sci Data ; 11(1): 220, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374088

ABSTRACT

Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB, 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB. This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of this disease.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology
18.
Heliyon ; 10(4): e25664, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38375309

ABSTRACT

Objectives: This article highlights the biological synthesis of silver nanoparticles (AgNPs) with their characteristic analysis, and it focuses on the application of synthesized NPs against multidrug resistance (MDR) bacteria. A cytotoxicity study was performed to assess the biocompatibility. Methods: Silver nanoparticle (AgNPs) formation was confirmed by different characterization methods such as UV-Vis spectrophotometer, Dynamic light scattering (DLS)- Zeta, Fourier transform infrared (FTIR), and Transmission electron microscope (TEM). The antimicrobial activity of the AgNPs was checked against various bacterial strains of Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Klebsiella pneumonia (K. pneumonia) by disc diffusion, minimum inhibition concentration test (MIC), and kinetic studies. The cytotoxicity of NPs against the Vero cell line was studied by cytotoxic assay. Results: The primary analysis of the formation of nanoparticles (NPs) was made by UV-Vis spectrophotometric analysis at 400 nm. At the same time, the efficient capping checked by FTIR shows the presence of a functional group at different wavelengths 3284, 1641,1573,1388,1288, and 1068 cm-1. At the same time, the transmission electron microscopic analysis (TEM) and DLS show that the shape and size of the synthesized NPs possess an average size of around ∼10-30 nm with spherical morphology. Further, the zeta potential confirmed the stability of the NPs. While the yield of NPs formation from silver salt was determined by an online yield calculator with the EDX analysis results. Synthesized NPs showed bactericidal effects against all the selected MDR pathogens with nontoxic effects against mammalian cells. Conclusion: Our findings indicate the remarkable antimicrobial activity of the biologically synthesized AgNPs, which can be an antimicrobial agent against multi-drug-resistant bacteria.

19.
Clin Exp Med ; 24(1): 12, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38244064

ABSTRACT

Several countries have recommended a booster dose of Pfizer BNT162b2 vaccine for subjects under the age of 60, who have already received the first dose of ChAdOx1. This is due to several ChAdOx1 vaccine-associated adverse vascular events and thrombocytopenia. Neutralization assay and quantitative IgG anti-SARS-CoV-2 Spike antibody (anti-S-IgG) were conducted to investigate the long-term responses to vaccine treatment in a cohort of Sardinian participants, who have received heterologous Prime-Boost Vaccination via ChAdOx1 vector vaccine and a booster dose via BNT162b2. The obtained results were compared with those of a cohort of healthcare workers (HCW) who received homologous BNT162b2 (BNT/BNT/BNT) vaccination. One month (T2) and five months after the second and before the third dose (T3), anti-spike antibody or neutralizing titers in the subjects vaccinated with ChAdOx1-S/BNT162b2 were significantly higher than those who experienced the ChAdOx1-S/ChAdOx1-S or BNT162b2/BNT162b2 schedule. These results suggest that a ChAdOx1-S/BNT162b2 regimen provides a more robust antibody response than either of the homologous regimens. However, the anti-spike antibodies or neutralizing titers after the third injection (mRNA vaccine) of ChAdOx1-S as a second dose and BNT162b2 were not statistically different. Homologous and heterologous vaccination provided a strong antibody response. Neutralizing activities were also described against the Omicron BA.1 variant in a sub-group (40) representative of the three vaccination regimens among our cohort.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , ChAdOx1 nCoV-19 , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccination , Antibodies, Viral , Immunoglobulin G
20.
Cancers (Basel) ; 15(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067286

ABSTRACT

Cervical cancer ranks as the fourth most prevalent cancer among women globally, with approximately 600,000 new cases being diagnosed each year. The principal driver of cervical cancer is the human papillomavirus (HPV), where viral oncoproteins E6 and E7 undertake the role of driving its carcinogenic potential. Despite extensive investigative efforts, numerous facets concerning HPV infection, replication, and pathogenesis remain shrouded in uncertainty. The virus operates through a variety of epigenetic mechanisms, and the epigenetic signature of HPV-related tumors is a major bottleneck in our understanding of the disease. Recent investigations have unveiled the capacity of viral oncoproteins to influence epigenetic changes within HPV-related tumors, and conversely, these tumors exert an influence on the surrounding epigenetic landscape. Given the escalating occurrence of HPV-triggered tumors and the deficiency of efficacious treatments, substantial challenges emerge. A promising avenue to address this challenge lies in epigenetic modulators. This review aggregates and dissects potential epigenetic modulators capable of combatting HPV-associated infections and diseases. By delving into these modulators, novel avenues for therapeutic interventions against HPV-linked cancers have come to the fore.

SELECTION OF CITATIONS
SEARCH DETAIL