Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Commun ; 14(1): 5667, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704604

ABSTRACT

Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.


Subject(s)
Drosophila , Lipolysis , Animals , Drosophila/genetics , Adipose Tissue , Enterocytes , Lipids
2.
Dig Dis Sci ; 68(10): 3857-3871, 2023 10.
Article in English | MEDLINE | ID: mdl-37650948

ABSTRACT

Visceral myopathy is a rare, life-threatening disease linked to identified genetic mutations in 60% of cases. Mostly due to the dearth of knowledge regarding its pathogenesis, effective treatments are lacking. The disease is most commonly diagnosed in children with recurrent or persistent disabling episodes of functional intestinal obstruction, which can be life threatening, often requiring long-term parenteral or specialized enteral nutritional support. Although these interventions are undisputedly life-saving as they allow affected individuals to avoid malnutrition and related complications, they also seriously compromise their quality of life and can carry the risk of sepsis and thrombosis. Animal models for visceral myopathy, which could be crucial for advancing the scientific knowledge of this condition, are scarce. Clearly, a collaborative network is needed to develop research plans to clarify genotype-phenotype correlations and unravel molecular mechanisms to provide targeted therapeutic strategies. This paper represents a summary report of the first 'European Forum on Visceral Myopathy'. This forum was attended by an international interdisciplinary working group that met to better understand visceral myopathy and foster interaction among scientists actively involved in the field and clinicians who specialize in care of people with visceral myopathy.


Subject(s)
Intestinal Pseudo-Obstruction , Malnutrition , Animals , Child , Humans , Quality of Life , Models, Animal , Mutation , Rare Diseases
3.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37066398

ABSTRACT

Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of infectious versus non-infectious mechanisms on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N -glycanase 1 (Pngl) leads to gut barrier defects, which cause starvation and increased JNK activity. These defects result in Foxo overactivation, which induces a hyperactive innate immune response and lipid catabolism, thereby contributing to lethality associated with loss of Pngl . Notably, germ-free rearing of Pngl mutants did not rescue lethality. In contrast, raising Pngl mutants on isocaloric, fat-rich diets improved animal survival in a dosage-dependent manner. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the immune and metabolic consequences of loss of Pngl are primarily mediated through non-infectious mechanisms.

4.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807238

ABSTRACT

The short-chain fatty acid butyrate, produced by the gut microbiota, acts as a potent histone deacetylase (HDAC) inhibitor. We assessed possible ameliorative effects of butyrate, relative to other HDAC inhibitors, in in vitro and in vivo models of Rubinstein-Taybi syndrome (RSTS), a severe neurodevelopmental disorder caused by variants in the genes encoding the histone acetyltransferases CBP and p300. In RSTS cell lines, butyrate led to the patient-specific rescue of acetylation defects at subtoxic concentrations. Remarkably, we observed that the commensal gut microbiota composition in a cohort of RSTS patients is significantly depleted in butyrate-producing bacteria compared to healthy siblings. We demonstrate that the effects of butyrate and the differences in microbiota composition are conserved in a Drosophila melanogaster mutant for CBP, enabling future dissection of the gut-host interactions in an in vivo RSTS model. This study sheds light on microbiota composition in a chromatinopathy, paving the way for novel therapeutic interventions.


Subject(s)
Butyrates/metabolism , Rubinstein-Taybi Syndrome/metabolism , Rubinstein-Taybi Syndrome/microbiology , Acetylation , Adolescent , Animals , Butyrates/pharmacology , CREB-Binding Protein/metabolism , Child , Child, Preschool , Cohort Studies , Disease Models, Animal , Drosophila melanogaster/metabolism , E1A-Associated p300 Protein/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/physiology , Female , Gastrointestinal Microbiome/physiology , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Male , Mutation , Protein Processing, Post-Translational , p300-CBP Transcription Factors/metabolism
5.
PLoS Genet ; 16(12): e1009258, 2020 12.
Article in English | MEDLINE | ID: mdl-33315951

ABSTRACT

Mutations in human N-glycanase 1 (NGLY1) cause the first known congenital disorder of deglycosylation (CDDG). Patients with this rare disease, which is also known as NGLY1 deficiency, exhibit global developmental delay and other phenotypes including neuropathy, movement disorder, and constipation. NGLY1 is known to regulate proteasomal and mitophagy gene expression through activation of a transcription factor called "nuclear factor erythroid 2-like 1" (NFE2L1). Loss of NGLY1 has also been shown to impair energy metabolism, but the molecular basis for this phenotype and its in vivo consequences are not well understood. Using a combination of genetic studies, imaging, and biochemical assays, here we report that loss of NGLY1 in the visceral muscle of the Drosophila larval intestine results in a severe reduction in the level of AMP-activated protein kinase α (AMPKα), leading to energy metabolism defects, impaired gut peristalsis, failure to empty the gut, and animal lethality. Ngly1-/- mouse embryonic fibroblasts and NGLY1 deficiency patient fibroblasts also show reduced AMPKα levels. Moreover, pharmacological activation of AMPK signaling significantly suppressed the energy metabolism defects in these cells. Importantly, the reduced AMPKα level and impaired energy metabolism observed in NGLY1 deficiency models are not caused by the loss of NFE2L1 activity. Taken together, these observations identify reduced AMPK signaling as a conserved mediator of energy metabolism defects in NGLY1 deficiency and suggest AMPK signaling as a therapeutic target in this disease.


Subject(s)
Congenital Disorders of Glycosylation/metabolism , Drosophila Proteins/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency , Protein Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Cells, Cultured , Drosophila Proteins/genetics , Drosophila melanogaster , Energy Metabolism , Fibroblasts/metabolism , Humans , Mice , NF-E2-Related Factor 1/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Protein Kinases/genetics , Signal Transduction
6.
Elife ; 92020 07 28.
Article in English | MEDLINE | ID: mdl-32720893

ABSTRACT

During endoplasmic reticulum-associated degradation (ERAD), the cytoplasmic enzyme N-glycanase 1 (NGLY1) is proposed to remove N-glycans from misfolded N-glycoproteins after their retrotranslocation from the ER to the cytosol. We previously reported that NGLY1 regulates Drosophila BMP signaling in a tissue-specific manner (Galeone et al., 2017). Here, we establish the Drosophila Dpp and its mouse ortholog BMP4 as biologically relevant targets of NGLY1 and find, unexpectedly, that NGLY1-mediated deglycosylation of misfolded BMP4 is required for its retrotranslocation. Accumulation of misfolded BMP4 in the ER results in ER stress and prompts the ER recruitment of NGLY1. The ER-associated NGLY1 then deglycosylates misfolded BMP4 molecules to promote their retrotranslocation and proteasomal degradation, thereby allowing properly-folded BMP4 molecules to proceed through the secretory pathway and activate signaling in other cells. Our study redefines the role of NGLY1 during ERAD and suggests that impaired BMP4 signaling might underlie some of the NGLY1 deficiency patient phenotypes.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Glycoproteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Translocation, Genetic/physiology , Animals , Drosophila Proteins/genetics , Gene Expression Regulation , Glycoproteins/genetics , Glycosylation
7.
Elife ; 62017 08 04.
Article in English | MEDLINE | ID: mdl-28826503

ABSTRACT

Mutations in the human N-glycanase 1 (NGLY1) cause a rare, multisystem congenital disorder with global developmental delay. However, the mechanisms by which NGLY1 and its homologs regulate embryonic development are not known. Here we show that Drosophila Pngl encodes an N-glycanase and exhibits a high degree of functional conservation with human NGLY1. Loss of Pngl results in developmental midgut defects reminiscent of midgut-specific loss of BMP signaling. Pngl mutant larvae also exhibit a severe midgut clearance defect, which cannot be fully explained by impaired BMP signaling. Genetic experiments indicate that Pngl is primarily required in the mesoderm during Drosophila development. Loss of Pngl results in a severe decrease in the level of Dpp homodimers and abolishes BMP autoregulation in the visceral mesoderm mediated by Dpp and Tkv homodimers. Thus, our studies uncover a novel mechanism for the tissue-specific regulation of an evolutionarily conserved signaling pathway by an N-glycanase enzyme.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/embryology , Drosophila/enzymology , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Animals , Gastrointestinal Tract/embryology , Gene Expression Regulation , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction
8.
Nanomedicine ; 11(3): 731-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25546848

ABSTRACT

Toxicity of silver nanoparticles (AgNPs) is supported by many observations in literature, but no mechanism details have been proved yet. Here we confirm and quantify the toxic potential of fully characterized AgNPs in HeLa and A549 cells. Notably, through a specific fluorescent probe, we demonstrate the intracellular release of Ag(+) ions in living cells after nanoparticle internalization, showing that in-situ particle degradation is promoted by the acidic lysosomal environment. The activation of metallothioneins in response to AgNPs and the possibility to reverse the main toxic pathway by Ag(+) chelating agents demonstrate a cause/effect relationship between ions and cell death. We propose that endocytosed AgNPs are degraded in the lysosomes and the release of Ag(+) ions in the cytosol induces cell damages, while ions released in the cell culture medium play a negligible effect. These findings will be useful to develop safer-by-design nanoparticles and proper regulatory guidelines of AgNPs. From the clinical editor: The authors describe the toxic potential of silver nanoparticles (AgNP) in human cancer cell lines. Cell death following the application of AgNPs is dose-dependent, and it is mostly due to Ag+ ions. Further in vivo studies should be performed to gain a comprehensive picture of AgNP-toxicity in mammals.


Subject(s)
Cytosol/metabolism , Metal Nanoparticles/chemistry , Silver , Cations, Monovalent/pharmacokinetics , HeLa Cells , Humans , Lysosomes/metabolism , Silver/chemistry , Silver/pharmacokinetics , Silver/pharmacology
9.
PLoS One ; 9(1): e85835, 2014.
Article in English | MEDLINE | ID: mdl-24465736

ABSTRACT

We have studied in vitro toxicity of iron oxide nanoparticles (NPs) coated with a thin silica shell (Fe3O4/SiO2 NPs) on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assays, and their genotoxicity by comet assay. Our results show that NPs surface passivation reduces the oxidative stress and alteration of iron homeostasis and, consequently, the overall toxicity, despite bare and passivated NPs show similar cell internalization efficiency. We found that the higher toxicity of bare NPs is due to their stronger in-situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. Our results indicate that surface engineering of Fe3O4/SiO2 NPs plays a key role in improving particles stability in biological environments reducing both cytotoxic and genotoxic effects.


Subject(s)
Coated Materials, Biocompatible/toxicity , Ferric Compounds/toxicity , Materials Testing , Nanoparticles/toxicity , Nanotechnology/methods , Silicon Dioxide/toxicity , Toxicity Tests , Cell Survival/drug effects , Culture Media/pharmacology , DNA Damage , Endocytosis/drug effects , HeLa Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Nanoparticles/ultrastructure , Reactive Oxygen Species/metabolism , Surface Properties
10.
Nanoscale ; 5(1): 307-17, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23165345

ABSTRACT

We show that water soluble InP/ZnS core/shell QDs are a safer alternative to CdSe/ZnS QDs for biological applications, by comparing their toxicity in vitro (cell culture) and in vivo (animal model Drosophila). By choosing QDs with comparable physical and chemical properties, we find that cellular uptake and localization are practically identical for these two nanomaterials. Toxicity of CdSe/ZnS QDs appears to be related to the release of poisonous Cd(2+) ions and indeed we show that there is leaching of Cd(2+) ions from the particle core despite the two-layer ZnS shell. Since an almost identical amount of In(III) ions is observed to leach from the core of InP/ZnS QDs, their very low toxicity as revealed in this study hints at a much lower intrinsic toxicity of indium compared to cadmium.


Subject(s)
Cadmium Compounds/toxicity , Drosophila/drug effects , Indium/toxicity , Phosphines/toxicity , Selenium Compounds/toxicity , Zinc Compounds/toxicity , Animals , Materials Testing , Quantum Dots , Survival Rate
11.
Nanoscale Res Lett ; 7(1): 575, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-23078758

ABSTRACT

Bacterial adhesion onto abiotic surfaces is an important issue in biology and medicine since understanding the bases of such interaction represents a crucial aspect in the design of safe implant devices with intrinsic antibacterial characteristics. In this framework, we investigated the effects of nanostructured metal substrates on Escherichia coli adhesion and adaptation in order to understand the bio-molecular dynamics ruling the interactions at the interface. In particular, we show how highly controlled nanostructured gold substrates impact the bacterial behavior in terms of morphological changes and lead to modifications in the expression profile of several genes, which are crucially involved in the stress response and fimbrial synthesis. These results mainly demonstrate that E. coli cells are able to sense even slight changes in surface nanotopography and to actively respond by activating stress-related pathways. At the same time, our findings highlight the possibility of designing nanoengineered substrates able to trigger specific bio-molecular effects, thus opening the perspective of smartly tuning bacterial behavior by biomaterial design.

12.
PLoS One ; 7(1): e29980, 2012.
Article in English | MEDLINE | ID: mdl-22238688

ABSTRACT

The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs) of different sizes (5, 15, 40, and 80 nm) in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES), while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN). We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size.


Subject(s)
Body Size/physiology , Citric Acid/toxicity , Drosophila melanogaster/drug effects , Gold/chemistry , Metal Nanoparticles/toxicity , Animals , Body Size/drug effects , Citric Acid/chemistry , Citric Acid/pharmacology , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Environmental Exposure , Female , Fertility/drug effects , Fertility/physiology , Gold/pharmacology , Gold/toxicity , In Situ Nick-End Labeling , Longevity/drug effects , Longevity/physiology , Male , Metal Nanoparticles/chemistry , Osmolar Concentration , Reactive Oxygen Species/metabolism , Reproduction/drug effects , Reproduction/physiology
13.
Nanomedicine ; 8(1): 1-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22094122

ABSTRACT

The peculiar physical/chemical characteristics of engineered nanomaterials have led to a rapid increase of nanotechnology-based applications in many fields. However, before exploiting their huge and wide potential, it is necessary to assess their effects upon interaction with living systems. In this context, the screening of nanomaterials to evaluate their possible toxicity and understand the underlying mechanisms currently represents a crucial opportunity to prevent severe harmful effects in the next future. In this work we show the in vivo toxicity of gold nanoparticles (Au NPs) in Drosophila melanogaster, highlighting significant genotoxic effects and, thus, revealing an unsettling aspect of the long-term outcome of the exposure to this nanomaterial. After the treatment with Au NPs, we observed dramatic phenotypic modifications in the subsequent generations of Drosophila, demonstrating their capability to induce mutagenic effects that may be transmitted to the descendants. Noteworthy, we were able to obtain the first nanomaterial-mutated organism, named NM-mut. Although these results sound alarming, they underline the importance of systematic and reliable toxicology characterizations of nanomaterials and the necessity of significant efforts by the nanoscience community in designing and testing suitable nanoscale surface engineering/coating to develop biocompatible nanomaterials with no hazardous effects for human health and environment. FROM THE CLINICAL EDITOR: While the clinical application of nanomedicine is still in its infancy, the rapid evolution of this field will undoubtedly result in a growing number of clinical trials and eventually in human applications. The interactions of nanoparticles with living organisms determine their toxicity and long-term safety, which must be properly understood prior to large-scale applications are considered. The paper by Dr. Pompa's team is the first ever demonstration of mutagenesis resulting in clearly observable phenotypic alterations and the generation of nano-mutants as a result of exposure to citrate-surfaced gold nanoparticles in drosophila. These groundbreaking results are alarming, but represent a true milestone in nanomedicine and serve as a a reminder and warning about the critical importance of "safety first" in biomedical science.


Subject(s)
Drosophila melanogaster/genetics , Gold/adverse effects , Metal Nanoparticles/adverse effects , Mutagenesis/genetics , Animals , Drosophila Proteins/genetics , Gene Expression , Gold/chemistry , Hemocytes/cytology , Humans , In Situ Nick-End Labeling , Metal Nanoparticles/chemistry , Mutagenicity Tests , Phenotype , Safety , Tumor Suppressor Protein p53/genetics
14.
Nanoscale ; 4(2): 486-95, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22095171

ABSTRACT

Despite the extensive use of silica nanoparticles (SiO(2)NPs) in many fields, the results about their potential toxicity are still controversial. In this work, we have performed a systematic in vitro study to assess the biological impact of SiO(2)NPs, by investigating 3 different sizes (25, 60 and 115 nm) and 2 surface charges (positive and negative) of the nanoparticles in 5 cell lines (3 in adherence and 2 in suspension). We analyzed the cellular uptake and distribution of the NPs along with their possible effects on cell viability, membrane integrity and generation of reactive oxygen species (ROS). Experimental results show that all the investigated SiO(2)NPs do not induce detectable cytotoxic effects (up to 2.5 nM concentration) in all cell lines, and that cellular uptake is mediated by an endocytic process strongly dependent on the particle size and independent of its original surface charge, due to protein corona effects. Once having assessed the biocompatibility of SiO(2)NPs, we have evaluated their potential in gene delivery, showing their ability to silence specific protein expression. The results of this work indicate that monodisperse and stable SiO(2)NPs are not toxic, revealing their promising potential in various biomedical applications.


Subject(s)
Cell Survival/drug effects , DNA/administration & dosage , DNA/genetics , Gene Silencing , Nanocapsules/chemistry , Nanocapsules/toxicity , Silicon Dioxide/toxicity , Transfection/methods , Cell Line , Humans
15.
ACS Nano ; 5(3): 1865-76, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21344880

ABSTRACT

Bacterial adhesion onto inorganic/nanoengineered surfaces is a key issue in biotechnology and medicine, because it is one of the first necessary steps to determine a general pathogenic event. Understanding the molecular mechanisms of bacteria-surface interaction represents a milestone for planning a new generation of devices with unanimously certified antibacterial characteristics. Here, we show how highly controlled nanostructured substrates impact the bacterial behavior in terms of morphological, genomic, and proteomic response. We observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) that type-1 fimbriae typically disappear in Escherichia coli adherent onto nanostructured substrates, as opposed to bacteria onto reference glass or flat gold surfaces. A genetic variation of the fimbrial operon regulation was consistently identified by real time qPCR in bacteria interacting with the nanorough substrates. To gain a deeper insight into the molecular basis of the interaction mechanisms, we explored the entire proteomic profile of E. coli by 2D-DIGE, finding significant changes in the bacteria adherent onto the nanorough substrates, such as regulations of proteins involved in stress processes and defense mechanisms. We thus demonstrated that a pure physical stimulus, that is, a nanoscale variation of surface topography, may play per se a significant role in determining the morphological, genetic, and proteomic profile of bacteria. These data suggest that in depth investigations of the molecular processes of microorganisms adhering to surfaces are of great importance for the design of innovative biomaterials with active biological functionalities.


Subject(s)
Bacterial Adhesion/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Nanostructures/chemistry , Nanostructures/ultrastructure , Escherichia coli/classification , Escherichia coli/cytology , Genomics , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Species Specificity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...