Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Genet ; 49(3): 270-285, 2019 05.
Article in English | MEDLINE | ID: mdl-30659475

ABSTRACT

We aimed to detect Attention-deficit/hyperactivity (ADHD) risk-conferring genes in adults. In children, ADHD is characterized by age-inappropriate levels of inattention and/or hyperactivity-impulsivity and may persists into adulthood. Childhood and adulthood ADHD are heritable, and are thought to represent the clinical extreme of a continuous distribution of ADHD symptoms in the general population. We aimed to leverage the power of studies of quantitative ADHD symptoms in adults who were genotyped. Within the SAGA (Study of ADHD trait genetics in adults) consortium, we estimated the single nucleotide polymorphism (SNP)-based heritability of quantitative self-reported ADHD symptoms and carried out a genome-wide association meta-analysis in nine adult population-based and case-only cohorts of adults. A total of n = 14,689 individuals were included. In two of the SAGA cohorts we found a significant SNP-based heritability for self-rated ADHD symptom scores of respectively 15% (n = 3656) and 30% (n = 1841). The top hit of the genome-wide meta-analysis (SNP rs12661753; p-value = 3.02 × 10-7) was present in the long non-coding RNA gene STXBP5-AS1. This association was also observed in a meta-analysis of childhood ADHD symptom scores in eight population-based pediatric cohorts from the Early Genetics and Lifecourse Epidemiology (EAGLE) ADHD consortium (n = 14,776). Genome-wide meta-analysis of the SAGA and EAGLE data (n = 29,465) increased the strength of the association with the SNP rs12661753. In human HEK293 cells, expression of STXBP5-AS1 enhanced the expression of a reporter construct of STXBP5, a gene known to be involved in "SNAP" (Soluble NSF attachment protein) Receptor" (SNARE) complex formation. In mouse strains featuring different levels of impulsivity, transcript levels in the prefrontal cortex of the mouse ortholog Gm28905 strongly correlated negatively with motor impulsivity as measured in the five choice serial reaction time task (r2 = - 0.61; p = 0.004). Our results are consistent with an effect of the STXBP5-AS1 gene on ADHD symptom scores distribution and point to a possible biological mechanism, other than antisense RNA inhibition, involved in ADHD-related impulsivity levels.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Nerve Tissue Proteins/genetics , R-SNARE Proteins/genetics , RNA, Long Noncoding/genetics , Adult , Animals , Attention Deficit Disorder with Hyperactivity/metabolism , Cohort Studies , DNA, Antisense/genetics , DNA, Antisense/metabolism , Female , Genetic Predisposition to Disease/genetics , Genetics, Population/methods , Genome-Wide Association Study , Genotype , HEK293 Cells , Humans , Male , Mice , Phenotype , Polymorphism, Single Nucleotide/genetics , RNA, Long Noncoding/metabolism , Risk Factors
2.
Mol Psychiatry ; 23(5): 1205-1212, 2018 05.
Article in English | MEDLINE | ID: mdl-28507316

ABSTRACT

Autism spectrum disorders (ASDs) and autistic traits in the general population may share genetic susceptibility factors. In this study, we investigated such potential overlap based on common genetic variants. We developed and validated a self-report questionnaire of autistic traits in adults. We then conducted genome-wide association studies (GWASs) of six trait scores derived from the questionnaire through exploratory factor analysis in 1981 adults from the general population. Using the results from the Psychiatric Genomics Consortium GWAS of ASDs, we observed genetic sharing between ASDs and the autistic traits 'childhood behavior', 'rigidity' and 'attention to detail'. Gene-set analysis subsequently identified 'rigidity' to be significantly associated with a network of ASD gene-encoded proteins that regulates neurite outgrowth. Gene-wide association with the well-established ASD gene MET reached significance. Taken together, our findings provide evidence for an overlapping genetic and biological etiology underlying ASDs and autistic population traits, which suggests that genetic studies in the general population may yield novel ASD genes.


Subject(s)
Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Adult , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/physiopathology , Autistic Disorder/etiology , Autistic Disorder/physiopathology , Female , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Humans , Male , Phenotype , Proto-Oncogene Proteins c-met/genetics , Self Report , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL