ABSTRACT
Studies in crop plants analyzing floral biology in conjunction with effectiveness and efficiency of pollinators on pollen transfer and fruit formation are not common, although they are essential to provide better management actions. On this base, we selected a farm in Bahia, Brazil, to study pollination on coffee plants (Coffea arabica L.). Specifically, we want to analyze if nectar traits influence visitor's performance throughout flower lifetime and if honeybees (Apis mellifera scutellata Lepeletier, 1836) are effective and efficient for coffee pollination comparing fertilization and fructification among four experimental treatments: open (OP), wind (WP), cross (HCP), and single-visit bee pollination (SVBP). We found that honeybees collect both nectar and pollen from coffee flowers and transfer pollen on stigmas even after one visit. No differences were found among treatments regarding the number of pollen grains transferred on the stigmas (effectiveness). OP flowers showed a comparative lower efficiency (pollen tubes and fruit set) probably due to pollination failure as those flowers have a higher variability on the number of deposited pollen grains. Two of the treatments (HCP and SVBP) showed higher fertilization (measuring tubes until the end of the style). Pollen loads seem to be limited by a peak of pollen transference by pollinators, followed by the stabilization in the number of pollen grains deposited per stigma. Thus, reproduction of the coffee can be limited by the quality of pollen grains moved by pollinators instead of quantity. Management strategies should focus on monitoring bee density on plants for increasing pollen quality transfer on flowers trough maintaining the adequate proportions of seminatural habitats and/or the number of hives on agricultural fields according to the flowering of the crop.
Subject(s)
Bees/physiology , Coffea/physiology , Pollination , Animals , Brazil , Crops, Agricultural , Flowers , PollenABSTRACT
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article that has already been published in
ABSTRACT
This article that has already been published in
ABSTRACT
Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower-pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird-pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity. Using two functional traits responsible for flower-pollinator fit [floral tube length (TL) and anther-nectary distance (AN)], one floral trait not linked to pollination [sepal length (SL), control for developmental modularity] and one leaf trait [leaf length (LL)], we found evidence of flower functional modularity. Covariation between TL and AN was ca. two-fold higher than the covariation of either of these traits with sepal and leaf lengths, and variations in TL and AN, important for a precise flower-pollinator fit, were smaller than SL and LL variations. Furthermore, we show that previously reported among-population variation of flowers associated with local pollinator phenotypes was independent from SL and LL variations. These results suggest that TL and AN are functionally linked to fit pollinators and sufficiently decoupled from developmentally related floral traits (SL) and vegetative traits (LL). These results support previous evidences of population differentiation due to local adaptation in the A. pernambucense complex and shed light on the role of flower-leaf decoupling for local adaptation in species distributed across biotic and abiotic heterogeneous landscapes.
Subject(s)
Adaptation, Physiological , Flowers/physiology , Lamiales/physiology , Plant Leaves/physiology , Animals , Birds , PollinationABSTRACT
The mistletoe Psittacanthus robustus was studied as a model to link flower phenology and nectar secretion strategy to pollinator behaviour and the reproductive consequences for the plant. The bright-coloured flowers presented diurnal anthesis, opened asynchronously throughout the rainy season and produced copious dilute nectar as the main reward for pollinators. Most nectar was secreted just after flower opening, with little sugar replenishment after experimental removals. During the second day of anthesis in bagged flowers, the flowers quickly reabsorbed the offered nectar. Low values of nectar standing crop recorded in open flowers can be linked with high visitation rates by bird pollinators. Eight hummingbirds and two passerines were observed as potential pollinators. The most frequent flower visitors were the hummingbirds Eupetomena macroura and Colibri serrirostris, which actively defended flowering mistletoes. The spatial separation between anthers, stigma and nectar chamber promotes pollen deposition on flapping wings of hovering hummingbirds that usually probe many flowers per visit. Seed set did not differ between hand-, self- and cross-pollinated flowers, but these treatments set significantly more seeds than flowers naturally exposed to flower visitors. We suggest that the limitation observed in the reproductive success of this plant is not related to pollinator scarcity, but probably to the extreme frequency of visitation by territorial hummingbirds. We conclude that the costs and benefits of plant reproduction depend on the interaction strength between flowers and pollinators, and the assessment of nectar secretion dynamics, pollinator behaviour and plant breeding system allows clarification of the complexity of such associations.
Subject(s)
Birds/physiology , Loranthaceae/physiology , Plant Nectar/metabolism , Pollination , Animals , Behavior, Animal , Flowers/physiology , Reproduction , TerritorialityABSTRACT
Inga species present brush-type flower morphology allowing them to be visited by distinct groups of pollinators. Nectar features in relation to the main pollinators have seldom been studied in this genus. To test the hypothesis of floral adaptation to both diurnal and nocturnal pollinators, we studied the pollination ecology of Inga sessilis, with emphasis on the nectar secretion patterns, effects of sequential removals on nectar production, sugar composition and the role of diurnal and nocturnal pollinators in its reproductive success. Inga sessilis is self-incompatible and pollinated by hummingbirds, hawkmoths and bats. Fruit set under natural conditions is very low despite the fact that most stigmas receive polyads with sufficient pollen to fertilise all ovules in a flower. Nectar secretion starts in the bud stage and flowers continually secreting nectar for a period of 8 h. Flowers actively reabsorbed the nectar a few hours before senescence. Sugar production increased after nectar removal, especially when flowers were drained during the night. Nectar sugar composition changed over flower life span, from sucrose-dominant (just after flower opening, when hummingbirds were the main visitors) to hexose-rich (throughout the night, when bats and hawkmoths were the main visitors). Diurnal pollinators contributed less than nocturnal ones to fruit production, but the former were more constant and reliable visitors through time. Our results indicate I. sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system.