Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38849632

ABSTRACT

OBJECTIVES: In patients having naïve glioblastoma multiforme (GBM), this study aims to assess the efficacy of Deep Learning algorithms in automating the segmentation of brain magnetic resonance (MR) images to accurately determine 3D masks for 4 distinct regions: enhanced tumor, peritumoral edema, non-enhanced/necrotic tumor, and total tumor. MATERIAL AND METHODS: A 3D U-Net neural network algorithm was developed for semantic segmentation of GBM. The training dataset was manually delineated by a group of expert neuroradiologists on MR images from the Brain Tumor Segmentation Challenge 2021 (BraTS2021) image repository, as ground truth labels for diverse glioma (GBM and low-grade glioma) subregions across four MR sequences (T1w, T1w-contrast enhanced, T2w, and FLAIR) in 1251 patients. The in-house test was performed on 50 GBM patients from our cohort (PerProGlio project). By exploring various hyperparameters, the network's performance was optimized, and the most optimal parameter configuration was identified. The assessment of the optimized network's performance utilized Dice scores, precision, and sensitivity metrics. RESULTS: Our adaptation of the 3D U-net with additional residual blocks demonstrated reliable performance on both the BraTS2021 dataset and the in-house PerProGlio cohort, employing only T1w-ce sequences for enhancement and non-enhanced/necrotic tumor models and T1w-ce + T2w + FLAIR for peritumoral edema and total tumor. The mean Dice scores (training and test) were 0.89 and 0.75; 0.75 and 0.64; 0.79 and 0.71; and 0.60 and 0.55, for total tumor, edema, enhanced tumor, and non-enhanced/necrotic tumor, respectively. CONCLUSIONS: The results underscore the high precision with which our network can effectively segment GBM tumors and their distinct subregions. The level of accuracy achieved agrees with the coefficients recorded in previous GBM studies. In particular, our approach allows model specialization for each of the different tumor subregions employing only those MR sequences that provide value for segmentation.

2.
Front Neurosci ; 16: 830143, 2022.
Article in English | MEDLINE | ID: mdl-36389232

ABSTRACT

Pediatric medical imaging represents a real challenge for physicians, as children who are patients often move during the examination, and it causes the appearance of different artifacts in the images. Thus, it is not possible to obtain good quality images for this target population limiting the possibility of evaluation and diagnosis in certain pathological conditions. Specifically, magnetic resonance imaging (MRI) is a technique that requires long acquisition times and, therefore, demands the use of sedation or general anesthesia to avoid the movement of the patient, which is really damaging in this specific population. Because ALARA (as low as reasonably achievable) principles should be considered for all imaging studies, one of the most important reasons for establishing novel MRI imaging protocols is to avoid the harmful effects of anesthesia/sedation. In this context, ground-breaking concepts and novel technologies, such as artificial intelligence, can help to find a solution to these challenges while helping in the search for underlying disease mechanisms. The use of new MRI protocols and new image acquisition and/or pre-processing techniques can aid in the development of neuroimaging studies for children evaluation, and their translation to pediatric populations. In this paper, a novel super-resolution method based on a convolutional neural network (CNN) in two and three dimensions to automatically increase the resolution of pediatric brain MRI acquired in a reduced time scheme is proposed. Low resolution images have been generated from an original high resolution dataset and used as the input of the CNN, while several scaling factors have been assessed separately. Apart from a healthy dataset, we also tested our model with pathological pediatric MRI, and it successfully recovers the original image quality in both visual and quantitative ways, even for available examples of dysplasia lesions. We hope then to establish the basis for developing an innovative free-sedation protocol in pediatric anatomical MRI acquisition.

SELECTION OF CITATIONS
SEARCH DETAIL
...