Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511035

ABSTRACT

Olfactory receptors (ORs), key components in ensuring the detection of myriad odorants, are expressed not only on the surface of olfactory neurons but also in many other tissues. In the case of ORs expressed at the sperm membrane, in vitro experiments with human and mouse spermatozoids have shown that they move toward the regions with the highest concentration of bourgeonal and lyral, respectively. However, to date, no in vivo experiment has shown any biological function of these ORs. To demonstrate a possible role in vivo of ORs in sperm chemotaxis, we overloaded the vaginal space of female mice from the prolific Swiss CD1 strain with lyral to induce competition with the supposed natural ligand and to prevent its detection. As shown, the mice that received lyral had much fewer newborns than the control mice treated with PBS, showing that lyral has a strong negative impact on procreation. This indicates that the ORs at the sperm surface are biologically active and make an important contribution to reproduction. Control experiments performed with hexanal, which does not alter sperm movement in vitro, indicate that the inhibition of reproduction observed was specific to lyral. In addition, we show that males are attracted to the smell of lyral, which acts as a pheromone, and prefer to copulate with mice marked on their back with lyral rather than with those that have not been marked. These results suggest an explanation for some cases of human infertility, which could result from an absence of recognition between the natural ligand and the ORs, either due to a mutation or a lack of expression from one of the two partners, allowing for the development of a diagnostic tests. These results might also lead to the development of a novel contraception strategy based on the use of vaginal tablets delivering an odorant or a drug that competes with the natural ligand.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Infant, Newborn , Humans , Male , Mice , Female , Animals , Receptors, Odorant/metabolism , Ligands , Semen/metabolism , Spermatozoa/metabolism , Odorants , Reproduction , Olfactory Receptor Neurons/metabolism
2.
Canine Med Genet ; 9(1): 7, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35596227

ABSTRACT

Dogs have an exquisite sense of olfaction. In many instances this ability has been utilized by humans for a wide range of important situations including detecting explosives and illegal drugs. It is accepted that some breeds have better senses of smell than others. Dogs can detect many volatile compounds at extremely low concentrations in air. To achieve such high levels of detection, the canine olfactory system is both complex and highly developed requiring a high density of olfactory receptors capable of detecting volatiles. Consequently the dog genome encodes a large number of olfactory receptor (OR) genes. However, it remains unclear as to what extent are all of these OR genes expressed on the cell surface. To facilitate such studies, a nasal brushing method was developed to recover dog nasal epithelial cell samples from which total RNA could be extracted and used to prepare high quality cDNA libraries. After capture by hybridization with an extensive set of oligonucleotides, the level of expression of each transcript was measured following next generation sequencing (NGS). The reproducibility of this sampling approach was checked by analyzing replicate samples from the same animal (up to 6 per each naris). The quality of the hybridization capture was also checked by analyzing two DNA libraries; this offered an advantage over RNA libraries by having an equal presence for each gene. Finally, we compared this brushing method performed on living dogs to a nasal epithelium biopsy approach applied to two euthanized terminally ill dogs, following consent from their owners.Comparison the expression levels of each transcript indicate that the ratios of expression between the highest and the least expressed OR in each sample are greater than 10,000 (paralog variation). Furthermore, it was clear that a number of OR genes are not expressed.The method developed and described here will allow researchers to further address whether variations observed in the OR transcriptome relate to dog 'life experiences' and whether any differences observed between samples are dog-specific or breed-specific.

5.
BMC Genomics ; 16: 335, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25900688

ABSTRACT

BACKGROUND: TAARs (trace amine-associated receptors) are among the principal receptors expressed by the olfactory epithelium. We used the recent BROAD Institute release of the genome sequences of five representative fishes of the cichlid family to establish the complete TAAR repertoires of these species and to compare them with five other fish TAAR repertoires. RESULTS: The genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were analyzed by exhaustive TBLASTN searches with a set of published TAAR gene sequences used as positive bait. A second TBLASTN analysis was then performed on the candidate genes, with a set of non-TAAR class A GPCR (G protein-coupled receptors) used as negative bait. The resulting cichlid repertoire contained 44 complete TAAR genes from O. niloticus, 18 from P. nyererei, 23 from H. burtoni, 12 from N. brichardi and 20 from M. zebra, plus a number of pseudogenes, edge genes and fragments. A large proportion of these sequences (80%) consisted of two coding exons, separated in all but two cases by an intron in the interloop 1 coding sequence. We constructed phylogenetic trees. These trees indicated that TAARs constitute a distinct clade, well separated from ORs (olfactory receptors) and other class A GPCRs. Also these repertoires consist of several families and subfamilies, a number of which are common to fugu, tetraodon, stickleback and medaka. Like all other TAARs identified to date, cichlid TAARs have a characteristic two-dimensional structure and contain a number of amino-acid motifs or amino acids, such cysteine, in particular conserved positions. CONCLUSIONS: Little is known about the functions of TAARs: in most cases their ligands have yet to be identified, partly because appropriate methods for such investigations have not been developed. Sequences analyses and comparisons of TAARs in several animal species, here fishes living in the same environment, should help reveal their roles and whether they are complementary to that of ORs.


Subject(s)
Cichlids/genetics , Fish Proteins/genetics , Genome , Receptors, G-Protein-Coupled/genetics , Amino Acid Motifs , Animals , Cichlids/classification , Contig Mapping , Evolution, Molecular , Fish Proteins/classification , Fish Proteins/metabolism , Fishes/classification , Fishes/genetics , Phylogeny , RNA Splice Sites/genetics , Receptors, G-Protein-Coupled/metabolism
6.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25186727

ABSTRACT

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Subject(s)
Cichlids/classification , Cichlids/genetics , Evolution, Molecular , Genetic Speciation , Genome/genetics , Africa, Eastern , Animals , DNA Transposable Elements/genetics , Gene Duplication/genetics , Gene Expression Regulation/genetics , Genomics , Lakes , MicroRNAs/genetics , Phylogeny , Polymorphism, Genetic/genetics
7.
BMC Genomics ; 15: 586, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25015101

ABSTRACT

BACKGROUND: To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes. RESULTS: We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many "edge genes" corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥ 99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families. CONCLUSIONS: Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.


Subject(s)
Cichlids/genetics , Receptors, Odorant/genetics , Amino Acid Motifs , Animals , Exons , Fishes/genetics , Genome , Multigene Family , Phylogeny , Receptors, Odorant/chemistry , Receptors, Odorant/classification
8.
Pigment Cell Melanoma Res ; 27(1): 90-102, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24112648

ABSTRACT

Spontaneously occurring melanomas are frequent in dogs. They appear at the same localizations as in humans, i.e. skin, mucosal sites, nail matrix and eyes. They display variable behaviors: tumors at oral localizations are more frequent and aggressive than at other anatomical sites. Interestingly, dog melanomas are associated with strong breed predispositions and overrepresentation of black-coated dogs. Epidemiological analysis of 2350 affected dogs showed that poodles are at high risk of developing oral melanoma, while schnauzers or Beauce shepherds mostly developped cutaneous melanoma. Clinical and histopathological analyses were performed on a cohort of 153 cases with a 4-yr follow-up. Histopathological characterization showed that most canine tumors are intradermal and homologous to human rare morphological melanomas types - 'nevocytoid type' and 'animal type'-. Tumor cDNA sequencing data, obtained from 95 dogs for six genes, relevant to human melanoma classification, detected somatic mutations in oral melanoma, in NRAS and PTEN genes, at human hotspot sites, but not in BRAF. Altogether, these findings support the relevance of the dog model for comparative oncology of melanomas, especially for the elucidation of non-UV induced pathways.


Subject(s)
Dog Diseases , Melanoma , Neoplasm Proteins , Animals , Disease Models, Animal , Dog Diseases/genetics , Dog Diseases/metabolism , Dog Diseases/pathology , Dogs , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Melanoma/veterinary , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/veterinary , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Ultraviolet Rays
9.
Cell Signal ; 25(6): 1486-97, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23524338

ABSTRACT

Whereas the activation of MAPKs (mitogen activated kinases) and Rho dependant pathways by GPCR (G protein coupled receptors) has been the subject of many studies, its implication in the signalling of olfactory receptors, which constitute the largest GPCR family, has been far less analysed. Using an in vitro heterologous system, we showed that odorant activated ORs activate SRE containing promoters via the ERK pathway. We also demonstrated that RhoA and Rock kinases but not Rac were involved in ORs-induced SRE/SRF activation and that AP1 was activated, via JNK and p38 MAPKinase. Using real time PCR we found that mOR23, RnI7 and CfOR12A07 induced elevated levels of transcription factors ELK-4, srf, c-fos and c-jun mRNAs whereas mOREG induced an elevated transcription levels of c-fos and c-jun mRNA only. We showed also that odorant activated ORs stimulate the downstream MAPKs and Rho pathways in primary cultures of rat olfactory sensory neurons (OSNs). Similar results were also obtained with OE (olfactory epithelium) extracts prepared from rats exposed to odorants in vivo. Finally, we showed the important role of the AKT and MAPK signalling pathways in OSNs survival. Taken together, these data provide direct evidence that the binding of odorants onto their ORs activates the MAPK and Rho signalling pathways that are involved in OSNs survival events. This suggests that these pathways could be implicated in the regulation of OSNs homeostasis.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Receptors, Odorant/metabolism , Serum Response Element/genetics , Transcription Factor AP-1/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Cells, Cultured , HEK293 Cells , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Olfactory Receptor Neurons/metabolism , Phosphorylation , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/metabolism , Rats , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Bull Acad Natl Med ; 197(6): 1225-30, 2013 Jun.
Article in French | MEDLINE | ID: mdl-25803941

ABSTRACT

Ichthyoses encompass a heterogeneous group of genodermatoses characterized by abnormal desquamation over the entire body due to defects of the terminal differentiation of keratinocytes and desquamation, which occur in the upper layer of the epidermis. Even though in humans more than 40 genes have already been identified, the genetic causes of several forms remain unknown and are difficult to identify in Humans. Strikingly, several purebred dogs are also affected by specific forms of ichthyoses. In the Golden retriever dog breed, an autosomal recessive form of ichthyosis, resembling human autosomal recessive congenital ichthyoses, has recently been diagnosed with a high incidence. We first characterized the disease occurring in the golden retriever breed and collected cases and controls. A genome-wide association study on 40 unrelated Golden retriever dogs, using the canine 49.000 SNPs (single nucleotide polymorphisms) array (Affymetrix v2), followed by statistical analyses and candidate gene sequencing, allowed to identify the causal mutation in the lipase coding PNPLA1 gene (patatin-like phospholipase domain-containing protein). Screening for alterations in the human ortholog gene in 10 autosomal recessive congenital ichthyoses families, for which no genetic cause has been identified thus far, allowed to identify two recessive mutations in the PNPLA1 protein in two families. This collaborative work between "human" and "canine" geneticists, practicians, histopathologists, biochemists and electron microscopy experts not only allowed to identify, in humans, an eighth gene for autosomal recessive congenital ichthyoses, but also allowed to highlight the function of this as-yet-unknown skin specific lipase in the lipid metabolism of the skin barrier. For veterinary medicine and breeding practices, a genetic test has been developed. These findings illustrate the importance of the discovery of relevant human orthologous canine genetic diseases, whose causes can be tracked in dog breeds more easily than in humans. Indeed, due to the selection and breeding practices applied to purebred dogs, the dog constitutes a unique species for unravelling phenotype/genotype relationships and providing new insights into human genetic diseases. This work paves the way for the identification of rare gene variants in humans that may be responsible for other keratinisation and epidermal barrier defects.


Subject(s)
Cooperative Behavior , Ichthyosis/genetics , Ichthyosis/veterinary , Interprofessional Relations , Animals , Disease Models, Animal , Dogs , Humans , Lipase/genetics , Mutation
11.
BMC Genomics ; 13: 222, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22672252

ABSTRACT

BACKGROUND: The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. RESULTS: We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR(3500) and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. CONCLUSION: The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia and the other model fishes. These maps represent a valuable resource for organizing the forthcoming genome sequence of Nile tilapia, and provide a foundation for evolutionary studies of East African cichlid fishes.


Subject(s)
Cichlids/genetics , Genome , Animals , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Comparative Genomic Hybridization , Expressed Sequence Tags , Genetic Linkage , Genotype , Microsatellite Repeats , Polymorphism, Single Nucleotide , Radiation Hybrid Mapping
12.
Cancer Epidemiol Biomarkers Prev ; 21(7): 1019-27, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22623710

ABSTRACT

BACKGROUND: Advantages offered by canine population substructure, combined with clinical presentations similar to human disorders, makes the dog an attractive system for studies of cancer genetics. Cancers that have been difficult to study in human families or populations are of particular interest. Histiocytic sarcoma is a rare and poorly understood neoplasm in humans that occurs in 15% to 25% of Bernese Mountain Dogs (BMD). METHODS: Genomic DNA was collected from affected and unaffected BMD in North America and Europe. Both independent and combined genome-wide association studies (GWAS) were used to identify cancer-associated loci. Fine mapping and sequencing narrowed the primary locus to a single gene region. RESULTS: Both populations shared the same primary locus, which features a single haplotype spanning MTAP and part of CDKN2A and is present in 96% of affected BMD. The haplotype is within the region homologous to human chromosome 9p21, which has been implicated in several types of cancer. CONCLUSIONS: We present the first GWAS for histiocytic sarcoma in any species. The data identify an associated haplotype in the highly cited tumor suppressor locus near CDKN2A. These data show the power of studying distinctive malignancies in highly predisposed dog breeds. IMPACT: Here, we establish a naturally occurring model of cancer susceptibility due to CDKN2 dysregulation, thus providing insight about this cancer-associated, complex, and poorly understood genomic region.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Susceptibility , Dog Diseases/genetics , Microtubule-Associated Proteins/genetics , Neoplasms/etiology , Animals , Chromosome Mapping , Dogs , Europe , Genome , Genome-Wide Association Study , Genotype , Humans , North America , Principal Component Analysis
13.
Nat Genet ; 44(2): 140-7, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22246504

ABSTRACT

Ichthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family.


Subject(s)
Codon, Nonsense , INDEL Mutation , Ichthyosis, Lamellar/genetics , Ichthyosis, Lamellar/veterinary , Lipase/genetics , Mutation, Missense , Adult , Animals , Base Sequence , Cells, Cultured , Dermatologic Agents/therapeutic use , Dogs , Female , Genes, Recessive , Genome-Wide Association Study , Humans , Ichthyosis, Lamellar/drug therapy , Male , Molecular Sequence Data , Nitrendipine/therapeutic use , Skin/ultrastructure
14.
Mamm Genome ; 23(1-2): 132-43, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22080304

ABSTRACT

Olfaction is a particularly important sense in the dog. Humans selected for this capacity during the domestication process, and selection has continued to be employed to enhance this ability. In this review we first describe the different olfactory systems that exist and the different odorant receptors that are expressed in those systems. We then focus on the dog olfactory receptors by describing the olfactory receptor gene repertoire and its polymorphisms. Finally, we discuss the different uses of dog olfaction and the questions that still need to be studied.


Subject(s)
Dogs/genetics , Olfactory Pathways/physiology , Receptors, Odorant/genetics , Smell/genetics , Animals , Dogs/physiology , Nose/anatomy & histology , Odorants , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Vomeronasal Organ/physiology
15.
PLoS Genet ; 7(10): e1002316, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22022279

ABSTRACT

The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.


Subject(s)
Behavior, Animal , Breeding , Dogs/genetics , Genetic Variation/genetics , Selection, Genetic , Animals , Body Size/genetics , Dogs/anatomy & histology , Ear/anatomy & histology , Genome-Wide Association Study , Genotyping Techniques , Haplotypes , Heterozygote , Homozygote , Phenotype , Phylogeny , Polymorphism, Single Nucleotide
16.
J Hered ; 102 Suppl 1: S47-61, 2011.
Article in English | MEDLINE | ID: mdl-21846747

ABSTRACT

Olfactory receptors (ORs) expressed at the cell surface of olfactory sensory neurons lining the olfactory epithelium are the first actors of events leading to odor perception and recognition. As for other mammalian ORs, few dog OR have been deorphanized, mainly because of the absence of good methodology and the difficulties encountered to express ORs at the cell surface. Within this work, our aim was 1) to deorphanize a large subset of dog OR and 2) to compare the implication of the 2 main pathways, namely the cAMP and inositol 1,4,5-triphosphate (IP3) pathways, in the transduction of the olfactory message. For this, we used 2 independent tests to assess the importance of each of these 2 pathways and analyzed the responses of 47 canine family 6 ORs to a number of aliphatic compounds. We found these ORs globally capable of inducing intracellular calcium elevation through the IP3 pathway as confirmed by the use of specific inhibitors and/or a cAMP increase in response to aldehyde exposure. We showed that the implication of the cAMP or/and IP3 pathway was dependent upon the ligand-receptor combination rather than on one or the other partner. Finally, by exposing OR-expressing cells to the 21 possible pairs of C6-C12 aliphatic aldehydes, we confirmed that some odorant pairs may have an inhibitory or additive effect. Altogether, these results reinforce the notion that odorant receptor subfamilies may constitute functional units and call for a more systematic use of 2 complementary tests interrogating the cAMP and IP3 pathways when deorphanizing ORs.


Subject(s)
Cyclic AMP/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Receptors, Odorant/genetics , Signal Transduction/genetics , Smell/genetics , Animals , Base Sequence , Calcium/metabolism , Cell Line , Cloning, Molecular , Dogs , Humans , Immunohistochemistry , Ligands , Molecular Sequence Data , Receptors, Odorant/metabolism , Sequence Analysis, DNA , Transfection/methods
17.
C R Biol ; 334(3): 190-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21377613

ABSTRACT

Dog domestication was probably started very early during the Upper paleolithic period (~35,000 BP), thus well before any other animal or plant domestication. This early process, probably unconscious, is called proto-domestication to distinguish it from the real domestication process that has been dated around 14,000 BC. Genomic DNA analyses have shown recently that domestication started in the Middle East and rapidly expanded into all human populations. Nowadays, the dog population is fragmented in several hundreds of breeds well characterized by their phenotypes that offer a unique spectrum of polymorphism. More recent studies detect genetic signatures that will be useful to highlight breed history as well as the impact of domestication at the DNA level.


Subject(s)
Animals, Domestic/genetics , Biological Evolution , Dogs/genetics , Animals , Behavior, Animal , Breeding , DNA/genetics , History, Ancient , Humans , Phenotype , Population , Selection, Genetic , Species Specificity , Wolves
18.
Genomics ; 96(4): 228-38, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20659549

ABSTRACT

The selective breeding of fish for aquaculture purposes requires the understanding of the genetic basis of traits such as growth, behaviour, resistance to pathogens and sex determinism. Access to well-developed genomic resources is a prerequisite to improve the knowledge of these traits. Having this aim in mind, a radiation hybrid (RH) panel of European sea bass (Dicentrarchus labrax) was constructed from splenocytes irradiated at 3000 rad, allowing the construction of a 1581 marker RH map. A total of 1440 gene markers providing ~4400 anchors with the genomes of three-spined stickleback, medaka, pufferfish and zebrafish, helped establish synteny relationships with these model species. The identification of Conserved Segments Ordered (CSO) between sea bass and model species allows the anticipation of the position of any sea bass gene from its location in model genomes. Synteny relationships between sea bass and gilthead seabream were addressed by mapping 37 orthologous markers. The sea bass genetic linkage map was integrated in the RH map through the mapping of 141 microsatellites. We are thus able to present the first complete gene map of sea bass. It will facilitate linkage studies and the identification of candidate genes and Quantitative Trait Loci (QTL). The RH map further positions sea bass as a genetic and evolutionary model of Perciformes and supports their ongoing aquaculture expansion.


Subject(s)
Bass/genetics , Genetic Markers , Radiation Chimera/genetics , Radiation Hybrid Mapping/methods , Synteny/genetics , Animals , Cell Line , Chromosome Mapping/methods , Female , Genetic Markers/physiology , Genome/genetics , Genomics/methods , Male , Models, Animal , Tetraodontiformes/genetics
19.
BMC Genomics ; 10: 572, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-19954510

ABSTRACT

BACKGROUND: Mammalian genomes contain a large number (approximately 1000) of olfactory receptor (OR) genes, many of which (20 to 50%) are pseudogenes. OR gene transcription is not restricted to the olfactory epithelium, but is found in numerous tissues. Using microarray hybridization and RTqPCR, we analyzed the mRNA profiles of the olfactory epithelium of male and female Brown Norway rats of different origins and ages (newborn, adult and old). RESULTS: (1) We observed very little difference between males and females and between rats from two different suppliers. (2) Different OR genes were expressed at varying levels, rather than uniformly across the four endoturbinates. (3) A large proportion of the gene transcripts (2/3 of all probes) were detected in all three age groups. Adult and older rats expressed similar numbers of OR genes, both expressing more OR genes than newborns. (4) Comparisons of whole transcriptomes or transcription profiles of expressed OR genes only showed a clear clustering of the samples as a function of age. (5) Most OR genes were expressed at lower levels at birth than in older animals, but a small number of OR genes were expressed specifically or were overexpressed in newborns. CONCLUSION: Not all OR genes are expressed at a detectable level. Pups expressed fewer OR genes than adult rats, and generally at a lower level; however, a small subset of OR genes were more strongly expressed in these newborn rats. The reasons for these differences are not understood. However, the specific expression of some OR genes in newborn olfactory epithelia may be related to the blindness and deafness of pups at birth, when these pups are heavily reliant on olfaction and their mother.


Subject(s)
Aging , Epithelial Cells/chemistry , Olfactory Bulb/chemistry , RNA, Messenger/analysis , Receptors, Odorant/analysis , Animals , Female , Gene Expression Profiling , Gene Expression Regulation , Male , RNA, Messenger/genetics , Rats , Receptors, Odorant/genetics , Transcription, Genetic
20.
J Hered ; 100 Suppl 1: S42-53, 2009.
Article in English | MEDLINE | ID: mdl-19546120

ABSTRACT

High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.


Subject(s)
Chromosome Mapping/veterinary , Chromosomes, Artificial, Bacterial/genetics , Dogs/genetics , Foxes/genetics , Mink/genetics , Animals , Genome , Genomics/methods , In Situ Hybridization, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...