Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 107(1): 169-177, 2019 01.
Article in English | MEDLINE | ID: mdl-29573163

ABSTRACT

Periprosthetic infection via skin-implant interface is a leading cause of failures and revisions in direct skeletal attachment of limb prostheses. Implants with deep porosity fabricated with skin and bone integrated pylons (SBIP) technology allow for skin ingrowth through the implant's structure creating natural barrier against infection. However, until the skin cells remodel in all pores of the implant, additional care is required to prevent from entering bacteria to the still nonoccupied pores. Temporary silver coating was evaluated in this work as a means to provide protection from infection immediately after implantation followed by dissolution of silver layer in few weeks. A sputtering coating with 1 µm thickness was selected to be sufficient for fighting infection until the deep ingrowth of skin in the porous structure of the pylon is completed. In vitro study showed less bacterial (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) growth on silver coated tablets compared to the control group. Analysis of cellular density of MG-63 cells, fibroblasts, and mesenchymal stem cells (MSCs) showed that silver coating did not inhibit the cell growth on the implants and did not affect cellular functional activity. The in vivo study did not show any postoperative complications during the 6-month observation period in the model of above-knee amputation in rabbits when SBIP implants, either silver-coated or untreated were inserted into the bone residuum. Three-phase scintigraphy demonstrated angiogenesis in the pores of the pylons. The findings suggest that a silver coating with well-chosen specifications can increase the safety of porous implants for direct skeletal attachment. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 169-177, 2019.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacteria/growth & development , Bacterial Infections , Bone-Implant Interface , Coated Materials, Biocompatible/chemistry , Implants, Experimental/microbiology , Silver/chemistry , Skin , Animals , Bacterial Infections/metabolism , Bacterial Infections/pathology , Bone-Implant Interface/microbiology , Bone-Implant Interface/pathology , Cell Line, Tumor , Humans , Male , Porosity , Rabbits , Skin/microbiology , Skin/pathology
2.
Adv Healthc Mater ; 5(24): 3182-3190, 2016 12.
Article in English | MEDLINE | ID: mdl-27860430

ABSTRACT

Mesenchymal stem cells (MSCs) are widely used in cell therapy due to their convenience, multiline differentiation potential, reproducible protocols, and biological properties. The potential of MSCs to impregnate magnetic microcapsules and their possible influence on cell function and ability to response to magnetic field have been explored. Interestingly, the cells suspended in media show much higher ability in internalization of microcapsules, then MSCs adhere into the surface. There is no significant effect of microcapsules on cell toxicity compared with other cell line-capsule internalization reported in literature. Due to internalization of magnetic capsules by the cells, such cell engineering platform is responsive to external magnetic field, which allows to manipulate MSC migration. Magnetically sorted MSCs are capable to differentiation as confirmed by their conversion to adipogenic and osteogenic cells using standard protocols. There is a minor effect of capsule internalization on cell adhesion, though MSCs are still able to form spheroid made by dozen of thousand MSCs. This work demonstrates the potential of use of microcapsule impregnated MSCs to carry internalized micron-sized vesicles and being navigated with external magnetic signaling.


Subject(s)
Capsules/administration & dosage , Capsules/adverse effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Adipogenesis/drug effects , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Humans , Magnetic Fields/adverse effects , Magnetics/methods , Osteogenesis/drug effects , Signal Transduction/drug effects
3.
Drug Des Devel Ther ; 8: 639-50, 2014.
Article in English | MEDLINE | ID: mdl-24920887

ABSTRACT

Recombinant 70 kDa heat shock protein (Hsp70) is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg). To assess Hsp70's neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia). Rats were then kept alive for 72 hours. The ischemic region was analyzed using a high-field 11 T MRI scanner. Administration of the Hsp70 decreased the infarction zone in a dose-dependent manner with an optimal (threefold) therapeutic response at 5 mg/kg. Long-term treatment of the ischemic rats with Hsp70 formulated in alginate granules with retarded release of protein further reduced the infarct volume in the brain as well as apoptotic area (annexin V staining). Due to its high neurotherapeutic potential, prolonged delivery of Hsp70 could be useful in the management of acute ischemic stroke.


Subject(s)
Brain Ischemia/drug therapy , HSP70 Heat-Shock Proteins/therapeutic use , Administration, Intravenous , Animals , Disease Models, Animal , HSP70 Heat-Shock Proteins/administration & dosage , Male , Rats , Rats, Wistar , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use
4.
J Biomed Mater Res A ; 102(9): 3033-48, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24115308

ABSTRACT

Angio- and osteogenesis following the two-stage (TS) implantation of the skin- and bone-integrated pylon seeded with autologous fibroblasts was evaluated. Two consecutive animal substudies were undertaken: intramedullary subcutaneous implantation (15 rabbits) and a TS transcutaneous implantation (12 rabbits). We observed enhanced osseointegrative properties of the intramedullary porous component seeded with fibroblasts induced into osteoblast differentiation, as compared to the untreated porous titanium pylon. The three-phase scintigraphy and subsequent histological analysis showed that the level of osteogenesis was 1.5-fold higher than in the control group, and significantly so (p < 0.05). The biocompatibility was further proved by the absence of inflammatory response or encapsulation and sequestration on the histology assay. Treatment of the transcutaneous component with autologous fibroblasts was associated with nearly a 2-fold decrease in the period required for the ingrowth of dermal and subdermal soft tissues into the implant surface, as compared to the untreated porous titanium component. Direct dermal attachment to the transcutaneous implant prevented superficial and deep periprosthetic infections in rabbits in vivo.


Subject(s)
Artificial Limbs , Fibroblasts/transplantation , Osseointegration , Osteoblasts/cytology , Tissue Scaffolds/chemistry , Animals , Fibroblasts/cytology , Male , Osteogenesis , Prosthesis Design , Rabbits , Titanium/chemistry
5.
J Rehabil Res Dev ; 44(5): 723-38, 2007.
Article in English | MEDLINE | ID: mdl-17943684

ABSTRACT

This article presents results of the further development and testing of the "skin and bone integrated pylon" (SBIP-1) for percutaneous (through skin) connection of the residual bone with an external limb prosthesis. We investigated a composite structure (called the SBIP-2) made of titanium particles and fine wires using mathematical modeling and mechanical testing. Results showed that the strength of the pylon was comparable with that of anatomical bone. In vitro and in vivo animal studies on 30 rats showed that the reinforcement of the composite pylon did not compromise its previously shown capacity for inviting skin and bone cell ingrowth through the device. These findings provide evidence for the safe and reliable long-term percutaneous transfer of vital and therapeutic substances, signals, and necessary forces and moments from a prosthetic device to the body.


Subject(s)
Artificial Limbs , Bone and Bones/surgery , Dermatologic Surgical Procedures , Osseointegration , Amputation, Surgical , Amputees/rehabilitation , Animals , Biomechanical Phenomena , Bone and Bones/cytology , Disease Models, Animal , Male , Models, Theoretical , Porosity , Prosthesis Design , Rats , Rats, Wistar , Skin/cytology , Skin Physiological Phenomena
6.
J Rehabil Res Dev ; 43(4): 573-80, 2006.
Article in English | MEDLINE | ID: mdl-17123195

ABSTRACT

Direct skeletal attachment of limb prostheses is a viable alternative to traditional techniques that are based on a socket-residuum interface. Direct skeletal attachment may be a better or even the only method for patients with a very short residuum and high soft-tissue volume. The problem of integrating the prosthetic pylon with residual skin during direct skeletal attachment of a limb prosthesis has not been solved, and the use of a completely porous prosthetic pylon has not been the subject of focused, systematic research. In this in vivo study, we investigated cell (osteocyte, fibroblast, and keratinocyte) adhesion and penetration into the pores of a titanium pylon implanted in Wistar rats. The porous titanium pylon was implanted in the bone of the thigh residua of four rats. Electronic scanning and morphological analysis demonstrated integration of the pylon with the surrounding skin. These findings support the possibility of developing a natural barrier against the infection associated with direct skeletal attachment of limb prostheses.


Subject(s)
Artificial Limbs , Dermatologic Surgical Procedures , Osseointegration , Skin Physiological Phenomena , Animals , Male , Models, Animal , Pilot Projects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...