Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000550

ABSTRACT

The effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoKATP) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed. The nucleoside uridine, which is a source for the synthesis of the mitoKATP channel opener uridine diphosphate, was able to dose-dependently decrease behavioral disorders and prevent the death of animals, which occurred for about 50% of animals in the model. Uridine prevented disturbances in redox, energy, and ion exchanges in brain mitochondria, and eliminated alterations in their structure and the myelin sheath in the substantia nigra. Cytochemical examination showed that uridine restored the indicators of oxidative phosphorylation and glycolysis in peripheral blood lymphocytes. The specific blocker of the mitoKATP channel, 5-hydroxydecanoate, eliminated the positive effects of uridine, suggesting that this channel is involved in neuroprotection. Taken together, these findings indicate the promise of using the natural metabolite uridine as a new drug to prevent and, possibly, stop the progression of Parkinson's disease.


Subject(s)
Mitochondria , Potassium Channels , Rotenone , Uridine , Animals , Uridine/pharmacology , Uridine/metabolism , Rats , Potassium Channels/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Male , Disease Models, Animal , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/pathology , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Neuroprotective Agents/pharmacology , Oxidative Phosphorylation/drug effects , Rats, Wistar , Decanoic Acids/pharmacology , Hydroxy Acids/pharmacology
2.
Biol Trace Elem Res ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907829

ABSTRACT

The objective of the present study was to evaluate hair levels of toxic and essential trace elements and minerals in male and female patients with chronic gout. A total of 223 examinees aged from 27 to 82 years old including 116 healthy controls (64 women and 52 men) and 107 patients with gout (56 women and 51 men) were enrolled in the current cross-sectional study. Analysis of hair toxic and essential trace element and mineral content was performed using inductively-coupled plasma mass-spectrometry. The obtained data demonstrate that hair B, Fe, I, and Mo levels in gout patients were 67%, 8%, 46%, and 21% higher in comparison to the respective control values. Hair Cr and V content in patients was more than twofold higher than in the controls. Hair Mg and Zn levels were found to be 34% and 11% lower when compared to the respective control values. Hair toxic metal and metalloid content was also significantly affected in gout patients. Specifically, hair Al, As, and Pb levels were 24%, 43%, and 33% higher in gout patients than in healthy controls, respectively. Analysis of covariance demonstrated that sex also had a significant influence on hair trace element and mineral levels in gout patients. Specifically, gout-associated overaccumulation of hair trace elements including was more profound in male than in female patients. It is assumed that trace element dysregulation may contribute to gout development and progression, especially in men. However, further studies are required to elucidate this association and the underlying molecular mechanisms.

3.
Animal ; 18(5): 101154, 2024 May.
Article in English | MEDLINE | ID: mdl-38703755

ABSTRACT

The Latvian local goat (LVK) breed represents the only native domestic goat breed in Latvia, but its limited population places it within the endangered category. However, the LVK breed has not yet undergone a comprehensive genetic characterization. Therefore, we completed whole genome sequencing to reveal the genetic foundation of the LVK breed while identifying genetic traits linked to the somatic cell count (SCC) levels. The study included 40 genomes of LVK goats sequenced to acquire at least 35x or 10x coverage. A Principal component analysis, a genetic distance tree, and an admixture analysis showed LVK's similarity to some European breeds, such as Finnish Landrace, Alpine, and Saanen, which aligns with the breed's history. An analysis of genome-wide heterozygosity, nucleotide diversity, and LD analysis indicated that the LVK population exhibits substantial levels of genetic diversity. LVK genome was dominated by short runs of homozygosity (ROHs, ≤ 500 kb) with a median length of 25 kb. With FROH 2.49%, average inbreeding levels were low; however, FROH ranged broadly from 0.13 to 12.2%. With the exception of one pure-blood breeding buck exhibiting FROH of 9.3% and FSNP of 8.5%, animals with at least 66% LVK ancestry showed moderate or no inbreeding. Overall, this study demonstrated that the LVK goats can be differentiated from imported breeds, although the population has a complex genetic structure. We were able to identify potential genetic traits associated with SCC levels, although the kinship of the animals and the heterogenic substructure of the population might have largely influenced the association analysis. We identified 26 genetic variants associated with SCC levels, which included the potentially relevant SNP rs662053371 in the OSBPL8 gene, indicating a potential signal linked to lipid metabolism in goats. To conclude, these findings present valuable insight into the genetic structure of the LVK breed for the conservation of local genetic resources.


Subject(s)
Genetic Variation , Goats , Animals , Goats/genetics , Latvia , Breeding , Cell Count/veterinary , Polymorphism, Single Nucleotide , Whole Genome Sequencing/veterinary , Female , Male , Genome
4.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396948

ABSTRACT

Endocannabinoid anandamide (AEA) and paracannabinoid lysophosphatidylinositol (LPI) play a significant role in cancer cell proliferation regulation. While anandamide inhibits the proliferation of cancer cells, LPI is known as a cancer stimulant. Despite the known endocannabinoid receptor crosstalk and simultaneous presence in the cancer microenvironment of both molecules, their combined activity has never been studied. We evaluated the effect of LPI on the AEA activity in six human breast cancer cell lines of different carcinogenicity (MCF-10A, MCF-7, BT-474, BT-20, SK-BR-3, MDA-MB-231) using resazurin and LDH tests after a 72 h incubation. AEA exerted both anti-proliferative and cytotoxic activity with EC50 in the range from 31 to 80 µM. LPI did not significantly affect the cell viability. Depending on the cell line, the response to the LPI-AEA combination varied from a decrease in AEA cytotoxicity to an increase in it. Based on the inhibitor analysis of the endocannabinoid receptor panel, we showed that for the former effect, an active GPR18 receptor was required and for the latter, an active CB2 receptor. The data obtained for the first time are important for the understanding the manner by which endocannabinoid receptor ligands acting simultaneously can modulate cancer growth at different stages.


Subject(s)
Arachidonic Acids , Breast Neoplasms , Endocannabinoids , Lysophospholipids , Humans , Female , Endocannabinoids/pharmacology , Breast Neoplasms/drug therapy , Polyunsaturated Alkamides/pharmacology , Cell Death , Receptor, Cannabinoid, CB1 , Tumor Microenvironment
5.
J Trace Elem Med Biol ; 83: 127397, 2024 May.
Article in English | MEDLINE | ID: mdl-38290269

ABSTRACT

The objective of the present study is assessment of serum trace element and amino acid levels in non-alcoholic fatty liver disease (NAFLD) patients with subsequent evaluation of its independent associations with markers of liver injury and metabolic risk. MATERIALS AND METHODS: 140 women aged 20-90 years old with diagnosed NAFLD and 140 healthy women with a respective age range were enrolled in the current study. Analysis of serum and hair levels of trace elements and minerals was performed with inductively-coupled plasma mass-spectrometry (ICP-MS). Serum amino acid concentrations were evaluated by high-pressure liquid chromatography (HPLC) with UV-detection. In addition, routine biochemical parameters including liver damage markers, alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT), were assessed spectrophotometrically. RESULTS: The findings demonstrated that patients with NAFLD were characterized by higher ALT, GGT, lactate dehydrogenase (LDH) and cholinesterase (CE) activity, as well as increased levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, and uric acid. NAFLD patients were characterized by reduced serum and hair Co, Se, and Zn levels, as well as hair Cu content and serum Mn concentrations in comparison to controls. Circulating Ala, Cit, Glu, Gly, Ile, Leu, Phe, and Tyr levels in NAFLD patients exceeded those in the control group. Multiple linear regression demonstrated that serum and hair trace element levels were significantly associated with circulating amino acid levels after adjustment for age, BMI, and metabolic parameters including liver damage markers. CONCLUSION: It is proposed that altered trace element handling may contribute to NAFLD pathogenesis through modulation of amino acid metabolism.


Subject(s)
Non-alcoholic Fatty Liver Disease , Trace Elements , Adult , Humans , Female , Young Adult , Middle Aged , Aged , Aged, 80 and over , Trace Elements/analysis , Amino Acids , Minerals , Cholesterol
6.
Am J Gastroenterol ; 119(4): 646-654, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37983769

ABSTRACT

INTRODUCTION: Antibiotic resistance is one of the main factors that determine the efficacy of treatments to eradicate Helicobacter pylori infection. Our aim was to evaluate the effectiveness of first-line and rescue treatments against H. pylori in Europe according to antibiotics resistance. METHODS: Prospective, multicenter, international registry on the management of H. pylori (European Registry on H. pylori Management). All infected and culture-diagnosed adult patients registered in the Spanish Association of Gastroenterology-Research Electronic Data Capture from 2013 to 2021 were included. RESULTS: A total of 2,852 naive patients with culture results were analyzed. Resistance to clarithromycin, metronidazole, and quinolones was 22%, 27%, and 18%, respectively. The most effective treatment, regardless of resistance, were the 3-in-1 single capsule with bismuth, metronidazole, and tetracycline (91%) and the quadruple with bismuth, offering optimal cure rates even in the presence of bacterial resistance to clarithromycin or metronidazole. The concomitant regimen with tinidazole achieved an eradication rate of 99% (90/91) vs 84% (90/107) with metronidazole. Triple schedules, sequential, or concomitant regimen with metronidazole did not achieve optimal results. A total of 1,118 non-naive patients were analyzed. Resistance to clarithromycin, metronidazole, and quinolones was 49%, 41%, and 24%, respectively. The 3-in-1 single capsule (87%) and the triple therapy with levofloxacin (85%) were the only ones that provided encouraging results. DISCUSSION: In regions where the antibiotic resistance rate of H. pylori is high, eradication treatment with the 3-in-1 single capsule, the quadruple with bismuth, and concomitant with tinidazole are the best options in naive patients. In non-naive patients, the 3-in-1 single capsule and the triple therapy with levofloxacin provided encouraging results.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Adult , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Metronidazole/therapeutic use , Clarithromycin/therapeutic use , Levofloxacin/therapeutic use , Bismuth/therapeutic use , Amoxicillin/therapeutic use , Tinidazole , Prospective Studies , Drug Therapy, Combination , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial
7.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139129

ABSTRACT

The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.


Subject(s)
Cardiomyopathies , Mitochondria, Heart , Rats , Animals , Isoproterenol/adverse effects , Mitochondria, Heart/metabolism , Uridine/pharmacology , Uridine/metabolism , Reactive Oxygen Species/metabolism , Cardiomyopathies/metabolism , Potassium/metabolism , Adenosine Triphosphate/metabolism
8.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762607

ABSTRACT

Using a model of Parkinson's disease (PD) induced by the bilateral injection of neurotoxin 6-hydroxydopamine (6-OHDA) into rat brain substantia nigra (SN), we showed uridine to exert a protective effect associated with activation of the mitochondrial ATP-dependent potassium (mitoK-ATP) channel. Injection of 4 µg neurotoxin evoked a 70% decrease in the time the experimental animal spent on the rod in the RotaRod test, an increase in the amount of lipid peroxides in blood serum and cerebral-cortex mitochondria and the rate of reactive oxygen species formation, and a decrease in Ca2+ retention in mitochondria. Herewith, lymphocytes featured an increase in the activity of lactate dehydrogenase, a cytosolic enzyme of glycolysis, without changes in succinate-dehydrogenase activity. Structural changes occurring in the SN and striatum manifested themselves in the destruction of mitochondria, degeneration of neurons and synapses, and stratification of myelin sheaths in them. Subcutaneous injections of 30 µg/kg uridine for 22 days restored the neurotoxin-induced changes in these parameters to levels close to the control. 5-Hydroxydecanoate (5 mg/kg), a specific mitoK-ATP channel inhibitor, eliminated the beneficial effect of uridine for almost all characteristics tested, indicating the involvement of the mitoK-ATP channel in the protective effect of uridine. The mechanism of the protective effect of uridine and its therapeutic applications for the prevention and treatment of PD are discussed.


Subject(s)
Neurotoxins , Parkinson Disease , Animals , Rats , Oxidopamine , Uridine/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Brain , Adenosine Triphosphate
9.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511195

ABSTRACT

Cerebral ischemia, and, as a result, insult, attacks up to 15 million people yearly in the world. In this connection, the development of effective preventive programs and methods of therapy has become one of the most urgent problems in modern angiology and pharmacology. The cytoprotective action of taxifolin (TAX) in ischemia is well known, but its limitations are also known due to its poor solubility and low capacity to pass through the hematoencephalic barrier. Molecular mechanisms underlying the protective effect of TAX in complex systems such as the brain remain poorly understood. It is known that the main cell types of the brain are neurons, astrocytes, and microglia, which regulate the activity of each other through neuroglial interactions. In this work, a comparative study of cytoprotective mechanisms of the effect of TAX and its new water-soluble form aqua taxifolin (aqTAX) was performed on cultured brain cells under ischemia-like conditions (oxygen-glucose deprivation (OGD)) followed by the reoxygenation of the culture medium. The concentration dependences of the protective effects of both taxifolin forms were determined using fluorescence microscopy, PCR analysis, and vitality tests. It was found that TAX began to effectively inhibit necrosis and the late stages of apoptosis in the concentration range of 30-100 µg/mL, with aqTAX in the range of 10-30 µg/mL. At the level of gene expression, aqTAX affected a larger number of genes than TAX; enhanced the basic and OGD/R-induced expression of genes encoding ROS-scavenging proteins with a higher efficiency, as well as anti-inflammatory and antiapoptotic proteins; and lowered the level of excitatory glutamate receptors. As a result, aqTAX significantly inhibited the OGD-induced increase in the Ca2+ levels in the cytosol ([Ca2+]i) in neurons and astrocytes under ischemic conditions. After a 40 min preincubation of cells with aqTAX under hypoxic conditions, these Ca2+ signals were completely inhibited, resulting in an almost complete suppression of necrotic death of cerebral cortical cells, which was not observed with the use of classical TAX.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Mice , Animals , Signal Transduction , Quercetin/pharmacology , Quercetin/metabolism , Neurons/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Oxygen/metabolism , Glucose/metabolism , Cells, Cultured , Ischemia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Cell Survival
10.
Epilepsy Res ; 192: 107135, 2023 05.
Article in English | MEDLINE | ID: mdl-37023553

ABSTRACT

The role of the hippocampus (Hp) in absence epileptic networks and the effect of endocannabinoid system on this network remain enigmatic. Here, using adapted nonlinear Granger causality, we compared the differences in network strength in four intervals (baseline or interictal, preictal, ictal and postictal) in two hours before (Epoch 1) and six hours (epochs 2, 3 and 4) after the administration of three different doses of the endocannabinoid agonist WIN55,212-2 (WIN) or solvent. Local field potentials were recorded for eight hours in 23 WAG/Rij rats in the Frontal (FC), Parietal PC), Occipital Cortex (OC) and in the hippocampus (Hp). The four intervals were visually marked by an expert neurophysiologist and the strength of couplings between electrode pairs were calculated in both directions. Ictally, a strong decrease in coupling strength was found between Hp and FC, as well as a large increase bidirectionally between PC and FC and unidirectionally from FC and PC to OC, and from FC to Hp over all epochs. The highest dose of WIN increased the couplings strength from FC to Hp and from OC to PC during 4 and 2 hr respectively in all intervals, and decreased the FC to PC coupling strength postictally in epoch 2. A single rat showed generalized convulsive seizures after the highest dose: this rat shared not only coupling changes with the other rats in the same condition, but showed many more. WIN reduced SWD number in epoch 2 and 3, their mean duration increased in epochs 3 and 4. Conclusions:during SWDs FC and PC are strongly coupled and drive OC, while at the same time the influence of Hp to FC is diminished. The first is in agreement with the cortical focus theory, the latter demonstrates an involvement of the hippocampus in SWD occurrence and that ictally the hippocampal control of the cortico-thalamo-cortical system is lost. WIN causes dramatic network changes which have major consequences for the decrease of SWDs, the occurrence of convulsive seizures, and the normal cortico-cortical and cortico-hippocampal interactions.


Subject(s)
Cannabinoid Receptor Agonists , Epilepsy, Absence , Rats , Animals , Cannabinoid Receptor Agonists/pharmacology , Electroencephalography , Endocannabinoids , Disease Models, Animal , Epilepsy, Absence/drug therapy , Seizures/chemically induced , Seizures/drug therapy , Hippocampus
11.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982628

ABSTRACT

GPR55 is a non-canonical cannabinoid receptor, important for cancer proliferation. Depending on the ligand, it induces either cell proliferation or death. The objective of the study was to establish the mechanisms of this multidirectional signaling. Using the CRISPR-Cas9 system, the GPR55, CB1, CB2, and GPR18 receptor knockouts of the MDA-MB-231 line were obtained. After the CB2 receptor knockout, the pro-apoptotic activity of the pro-apoptotic ligand docosahexaenoyl dopamine (DHA-DA) slightly increased, while the pro-proliferative activity of the most active synthetic ligand of the GPR55 receptor (ML-184) completely disappeared. On the original cell line, the stimulatory effect of ML-184 was removed by the CB2 receptor blocker and by GPR55 receptor knockout. Thus, it can be confidently assumed that when proliferation is stimulated with the participation of the GPR55 receptor, a signal is transmitted from the CB2 receptor to the GPR55 receptor due to the formation of a heterodimer. GPR18 was additionally involved in the implementation of the pro-apoptotic effect of DHA-DA, while the CB1 receptor is not involved. In the implementation of the pro-apoptotic action of DHA-DA, the elimination of Gα13 led to a decrease in cytotoxicity. The obtained data provide novel details to the mechanism of the pro-proliferative action of GPR55.


Subject(s)
Neoplasms , Receptor, Cannabinoid, CB2 , Receptor, Cannabinoid, CB2/genetics , Ligands , Receptors, Cannabinoid/metabolism , Signal Transduction , Cell Proliferation , Apoptosis , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptor, Cannabinoid, CB1 , Neoplasms/genetics
12.
Life (Basel) ; 13(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36836645

ABSTRACT

Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell-cell interactions or invoking direct long-lasting effects on brain vessels.

13.
Nat Prod Res ; 37(12): 1954-1960, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35975755

ABSTRACT

A set of 12 abietane diterpene derivatives have been synthesised by the Ugi-four component reaction (Ugi-4CR) and tested for cytotoxicity and activity against influenza virus A/Puerto Rico/8/34 (H1N1) and SARS-CoV-2 pseudovirus. Five dipeptide derivatives demonstrated a selectivity index (SI) higher than 10 and IC50 values from 2 to 32 µM against influenza virus. Compound 11 was found to be a lead with SI of 200, and time-of-addition experiments showed the viral entry into the cell and the binding of the virus to the receptor as a possible target. Compound 7 was the only one showed weak anti-SARS-CoV-2 activity with EC50 value of 80.96 µM. Taken together, our data suggest the potency of diterpene acids-Ugi products as new effective anti-influenza compounds.


Subject(s)
COVID-19 , Diterpenes , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , Abietanes/pharmacology , Abietanes/chemistry
14.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422520

ABSTRACT

Respiratory syncytial virus (RSV) causes acute respiratory infections, thus, posing a serious threat to the health of infants, children, and elderly people. In this study, we have discovered a series of potent RSV entry inhibitors with the (-)-borneol scaffold. The active compounds 3b, 5a, 5c, 7b, 9c, 10b, 10c, and 14b were found to exhibit activity against RSV A strain A2 in HEp-2 cells. The most active substances, 3b (IC50 = 8.9 µM, SI = 111) and 5a (IC50 = 5.0 µM, SI = 83), displayed more potency than the known antiviral agent Ribavirin (IC50 = 80.0 µM, SI = 50). Time-of-addition assay and temperature shift studies demonstrated that compounds 3b, 5a, and 6b inhibited RSV entry, probably by interacting with the viral F protein that mediated membrane fusion, while they neither bound to G protein nor inhibited RSV attachment to the target cells. Appling procedures of molecular modeling and molecular dynamics, the binding mode of compounds 3b and 5a was proposed. Taken together, the results of this study suggest (-)-borneol esters to be promising lead compounds for developing new anti-RSV agents.

15.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142532

ABSTRACT

Long-term hyperglycemia in diabetes mellitus is associated with complex damage to cardiomyocytes and the development of mitochondrial dysfunction in the myocardium. Uridine, a pyrimidine nucleoside, plays an important role in cellular metabolism and is used to improve cardiac function. Herein, the antidiabetic potential of uridine (30 mg/kg/day for 21 days, i.p.) and its effect on mitochondrial homeostasis in the heart tissue were examined in a high-fat diet-streptozotocin-induced model of diabetes in C57BL/6 mice. We found that chronic administration of uridine to diabetic mice normalized plasma glucose and triglyceride levels and the heart weight/body weight ratio and increased the rate of glucose utilization during the intraperitoneal glucose tolerance test. Analysis of TEM revealed that uridine prevented diabetes-induced ultrastructural abnormalities in mitochondria and sarcomeres in ventricular cardiomyocytes. In diabetic heart tissue, the mRNA level of Ppargc1a decreased and Drp1 and Parkin gene expression increased, suggesting the disturbances of mitochondrial biogenesis, fission, and mitophagy, respectively. Uridine treatment of diabetic mice restored the mRNA level of Ppargc1a and enhanced Pink1 gene expression, which may indicate an increase in the intensity of mitochondrial biogenesis and mitophagy, and as a consequence, mitochondrial turnover. Uridine also reduced oxidative phosphorylation dysfunction and suppressed lipid peroxidation, but it had no significant effect on the impaired calcium retention capacity and potassium transport in the heart mitochondria of diabetic mice. Altogether, these findings suggest that, along with its hypoglycemic effect, uridine has a protective action against diabetes-mediated functional and structural damage to cardiac mitochondria and disruption of mitochondrial quality-control systems in the diabetic heart.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Blood Glucose/metabolism , Calcium/metabolism , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat/adverse effects , Hypoglycemic Agents/adverse effects , Mice , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Potassium/metabolism , Protein Kinases/metabolism , RNA, Messenger/metabolism , Streptozocin/adverse effects , Triglycerides/metabolism , Ubiquitin-Protein Ligases/metabolism , Uridine/pharmacology , Uridine/therapeutic use
16.
Phytochem Lett ; 51: 91-96, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35935343

ABSTRACT

A chemical library was constructed based on the resin acids (abietic, dehydroabietic, and 12-formylabietic) and its diene adducts (maleopimaric and quinopimaric acid derivatives). The one-pot three-component CuCl-catalyzed aminomethylation of the abietane diterpenoid propargyl derivatives was carried out by formaldehyde and secondary amines (diethylamine, pyrrolidine, morpholine, and homopiperazine). All compounds were tested for cytotoxicity and antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells and SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells. Among 21 tested compounds, six derivatives demonstrated a selectivity index (SI) higher than 10, and their IC50 values ranged from 0.19 to 5.0 µM. Moreover, two derivatives exhibited potent anti-SARS-CoV-2 infection activity. The antiviral activity and toxicity strongly depended on the nature of the diterpene core and heterocyclic substituent. Compounds 12 and 21 bearing pyrrolidine moieties demonstrated the highest virus-inhibiting activity with SIs of 128.6 and 146.8, respectively, and appeared to be most effective when added at the time points 0-10 and 1-10 h of the viral life cycle. Molecular docking and dynamics modeling were adopted to investigate the binding mode of compound 12 into the binding pocket of influenza A virus M2 protein. Compound 9 with a pyrrolidine group at C20 of 17-formylabietic acid was a promising anti-SARS-CoV-2 agent with an EC50 of 10.97 µM and a good SI value > 18.2. Collectively, our data suggested the potency of diterpenic Mannich bases as effective anti-influenza and anti-COVID-19 compounds.

17.
Membranes (Basel) ; 12(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35877870

ABSTRACT

Mitochondria are capable of synchronized oscillations in many variables, but the underlying mechanisms are still unclear. In this study, we demonstrated that rat liver mitochondria, when exposed to a pulse of Sr2+ ions in the presence of valinomycin (a potassium ionophore) and cyclosporin A (a specific inhibitor of the permeability transition pore complex) under hypotonia, showed prolonged oscillations in K+ and Sr2+ fluxes, membrane potential, pH, matrix volume, rates of oxygen consumption and H2O2 formation. The dynamic changes in the rate of H2O2 production were in a reciprocal relationship with the respiration rate and in a direct relationship with the mitochondrial membrane potential and other indicators studied. The pre-incubation of mitochondria with Ca2+(Sr2+)-dependent phospholipase A2 inhibitors considerably suppressed the accumulation of free fatty acids, including palmitic and stearic acids, and all spontaneous Sr2+-induced cyclic changes. These data suggest that the mechanism of ion efflux from mitochondria is related to the opening of short-living pores, which can be caused by the formation of complexes between Sr2+(Ca2+) and endogenous long-chain saturated fatty acids (mainly, palmitic acid) that accumulate due to the activation of phospholipase A2 by the ions. A possible role for transient palmitate/Ca2+(Sr2+)-induced pores in the maintenance of ion homeostasis and the prevention of calcium overload in mitochondria under pathophysiological conditions is discussed.

18.
Wiad Lek ; 75(3): 611-618, 2022.
Article in English | MEDLINE | ID: mdl-35522866

ABSTRACT

OBJECTIVE: The aim: To study the state of the intestinal microbiota (ІМ) in patients with Nonalcoholic fatty liver disease (NAFLD) and to determine changes in its composition at the level of basic phylotypes. PATIENTS AND METHODS: Materials and methods: The study included 114 patients with NAFLD with metabolic disorders and 64 patients of control group. Determination of the composition of the ІМ at the level of major phylotypes was performed by identifying total bacterial DNA and DNA of Bacteroidetes, Firmicutes and Actinobacteria by quantitative polymerase chain reaction (PCR) in real time (qRT-PCR) using universal primers for the 16S rRNA gene and taxon-specific primers of production (Thermo Fisher Scientific). RESULTS: Results: It was defined the weak correlation between the content of Firmicutes and proinflammatory markers (C-reactive protein (CRP) and Tumor necrosis factor (TNF) alpha) (p <0.05) and inverse correlation of CRP with the content of Bacteroidetes (p <0.001). Also have been observed significant changes in the main intestinal phyla in the direction of increasing the content of Firmicutes in patients with NAFLD with a high degree of steatosis and elevated levels of proinflammatory cytokines (p <0.05). CONCLUSION: Conclusions: IM imbalance leads to excessive synthesis of pro-inflammatory cytokines, promotes the activation of cellular mechanisms, which increases the flow of fatty acids into hepatocytes and increases the degree of hepatic steatosis.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Biomarkers , Cytokines , Gastrointestinal Microbiome/genetics , Humans , Inflammation , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Ribosomal, 16S
19.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408661

ABSTRACT

Respiratory syncytial virus infection (RSVI) is an acute medical and social problem in many countries globally. Infection is most dangerous for infants under one year old and the elderly. Despite its epidemiological relevance, only two drugs are registered for clinical use against RSVI: ribavirin (approved in a limited number of countries due to side effects) and palivizumab (Synagis), which is intended only for the prevention, but not the treatment, of infection. Currently, various research groups are searching for new drugs against RSV, with three main areas of research: small molecules, polymeric drugs (proteins and peptides), and plant extracts. This review is devoted to currently developed protein and peptide anti-RSV drugs.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Aged , Antiviral Agents/therapeutic use , Humans , Infant , Palivizumab/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Tract Infections/drug therapy
20.
Appl Radiat Isot ; 181: 110094, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998213

ABSTRACT

Safe irradiated nuclear fuel (INF) storage of research reactors is ensured by solving issues of protection against γ-irradiation while the neutron component is usually without consideration due to significantly lower intensity. Regarding the low-enriched composite uranium fuel of the IVG.1M reactor that is characterized by a set of elements with low and mean atomic weight where reaction is possible (α, n), evaluation of the neutron component is an indispensable procedure for ensuring radiation safety INF storage. This research suggests a method for neutron component calculation of radiation properties of fresh and irradiated fuel of the IVG.1M reactor, the α-n-component was evaluated. The research results will be useful when choosing a technology for INF storage and for analysis of feasibility to use neutron irradiation with a purpose to control fuel burnout.

SELECTION OF CITATIONS
SEARCH DETAIL