Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
NPJ Precis Oncol ; 8(1): 104, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760413

ABSTRACT

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors. The identification of additional cell surface targets is necessary to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We further demonstrated that AR alterations were associated with higher expression of PSMA and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we show a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for the clinical development of cell surface targeting agents in CRPC.

2.
Nature ; 616(7958): 798-805, 2023 04.
Article in English | MEDLINE | ID: mdl-37046089

ABSTRACT

Oncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer1-6. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus. These data included 206 biopsies in Barrett's oesophagus surveillance and EAC cohorts from Cambridge University. We also analysed WGS and histology data from biopsies that were collected across multiple regions at 2 time points from 80 patients in a case-control study at the Fred Hutchinson Cancer Center. In the Cambridge cohorts, the frequency of ecDNA increased between Barrett's-oesophagus-associated early-stage (24%) and late-stage (43%) EAC, suggesting that ecDNA is formed during cancer progression. In the cohort from the Fred Hutchinson Cancer Center, 33% of patients who developed EAC had at least one oesophageal biopsy with ecDNA before or at the diagnosis of EAC. In biopsies that were collected before cancer diagnosis, higher levels of ecDNA were present in samples from patients who later developed EAC than in samples from those who did not. We found that ecDNAs contained diverse collections of oncogenes and immunomodulatory genes. Furthermore, ecDNAs showed increases in copy number and structural complexity at more advanced stages of disease. Our findings show that ecDNA can develop early in the transition from high-grade dysplasia to cancer, and that ecDNAs progressively form and evolve under positive selection.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Carcinogenesis , DNA , Disease Progression , Early Detection of Cancer , Esophageal Neoplasms , Humans , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Case-Control Studies , DNA/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Carcinogenesis/genetics , Whole Genome Sequencing , Cohort Studies , Biopsy , Oncogenes , Immunomodulation , DNA Copy Number Variations , Gene Amplification , Early Detection of Cancer/methods
3.
Nat Commun ; 13(1): 2300, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484108

ABSTRACT

While the genomes of normal tissues undergo dynamic changes over time, little is understood about the temporal-spatial dynamics of genomes in premalignant tissues that progress to cancer compared to those that remain cancer-free. Here we use whole genome sequencing to contrast genomic alterations in 427 longitudinal samples from 40 patients with stable Barrett's esophagus compared to 40 Barrett's patients who progressed to esophageal adenocarcinoma (ESAD). We show the same somatic mutational processes are active in Barrett's tissue regardless of outcome, with high levels of mutation, ESAD gene and focal chromosomal alterations, and similar mutational signatures. The critical distinction between stable Barrett's versus those who progress to cancer is acquisition and expansion of TP53-/- cell populations having complex structural variants and high-level amplifications, which are detectable up to six years prior to a cancer diagnosis. These findings reveal the timing of common somatic genome dynamics in stable Barrett's esophagus and define key genomic features specific to progression to esophageal adenocarcinoma, both of which are critical for cancer prevention and early detection strategies.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Disease Progression , Esophageal Neoplasms/pathology , Humans
4.
Evol Appl ; 14(2): 399-415, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33664784

ABSTRACT

Barrett's Esophagus is a neoplastic condition which progresses to esophageal adenocarcinoma in 5% of cases. Key events affecting the outcome likely occur before diagnosis of Barrett's and cannot be directly observed; we use phylogenetic analysis to infer such past events. We performed whole-genome sequencing on 4-6 samples from 40 cancer outcome and 40 noncancer outcome patients with Barrett's Esophagus, and inferred within-patient phylogenies of deconvoluted clonal lineages. Spatially proximate lineages clustered in the phylogenies, but temporally proximate ones did not. Lineages with inferred loss-of-function mutations in both copies of TP53 and CDKN2A showed enhanced spatial spread, whereas lineages with loss-of-function mutations in other frequently mutated loci did not. We propose a two-phase model with expansions of TP53 and CKDN2A mutant lineages during initial growth of the segment, followed by relative stasis. Subsequent to initial expansion, mutations in these loci as well as ARID1A and SMARCA4 may show a local selective advantage but do not expand far: The spatial structure of the Barrett's segment remains stable during surveillance even in patients who go on to cancer. We conclude that the cancer/noncancer outcome is strongly affected by early steps in formation of the Barrett's segment.

5.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007263

ABSTRACT

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Subject(s)
Genomic Structural Variation/genetics , Genomics/methods , Neoplasms/genetics , Chromosome Inversion/genetics , Chromothripsis , DNA Copy Number Variations/genetics , Gene Rearrangement/genetics , Genome, Human/genetics , Humans , Mutation/genetics , Whole Genome Sequencing/methods
6.
Genome Med ; 11(1): 14, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30867038

ABSTRACT

It was highlighted that in the original article [1] the Availability of data and materials section was incorrect.

7.
Genome Med ; 10(1): 17, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29486792

ABSTRACT

BACKGROUND: Use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been shown to protect against tetraploidy, aneuploidy, and chromosomal alterations in the metaplastic condition Barrett's esophagus (BE) and to lower the incidence and mortality of esophageal adenocarcinoma (EA). The esophagus is exposed to both intrinsic and extrinsic mutagens resulting from gastric reflux, chronic inflammation, and exposure to environmental carcinogens such as those found in cigarettes. Here we test the hypothesis that NSAID use inhibits accumulation of point mutations/indels during somatic genomic evolution in BE. METHODS: Whole exome sequences were generated from 82 purified epithelial biopsies and paired blood samples from a cross-sectional study of 41 NSAID users and 41 non-users matched by sex, age, smoking, and continuous time using or not using NSAIDs. RESULTS: NSAID use reduced overall frequency of point mutations across the spectrum of mutation types, lowered the frequency of mutations even when adjusted for both TP53 mutation and smoking status, and decreased the prevalence of clones with high variant allele frequency. Never smokers who consistently used NSAIDs had fewer point mutations in signature 17, which is commonly found in EA. NSAID users had, on average, a 50% reduction in functional gene mutations in nine cancer-associated pathways and also had less diversity in pathway mutational burden compared to non-users. CONCLUSIONS: These results indicate NSAID use functions to limit overall mutations on which selection can act and supports a model in which specific mutant cell populations survive or expand better in the absence of NSAIDs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Barrett Esophagus/drug therapy , Barrett Esophagus/genetics , Exome/genetics , Mutation/genetics , DNA Copy Number Variations/genetics , Gene Frequency/genetics , Humans , Loss of Heterozygosity , Mutagenesis/genetics
8.
Cancer Prev Res (Phila) ; 8(9): 845-56, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26130253

ABSTRACT

Cancers detected at a late stage are often refractory to treatments and ultimately lethal. Early detection can significantly increase survival probability, but attempts to reduce mortality by early detection have frequently increased overdiagnosis of indolent conditions that do not progress over a lifetime. Study designs that incorporate biomarker trajectories in time and space are needed to distinguish patients who progress to an early cancer from those who follow an indolent course. Esophageal adenocarcinoma is characterized by evolution of punctuated and catastrophic somatic chromosomal alterations and high levels of overall mutations but few recurrently mutated genes aside from TP53. Endoscopic surveillance of Barrett's esophagus for early cancer detection provides an opportunity for assessment of alterations for cancer risk in patients who progress to esophageal adenocarcinoma compared with nonprogressors. We investigated 1,272 longitudinally collected esophageal biopsies in a 248 Barrett's patient case-cohort study with 20,425 person-months of follow-up, including 79 who progressed to early-stage esophageal adenocarcinoma. Cancer progression risk was assessed for total chromosomal alterations, diversity, and chromosomal region-specific alterations measured with single-nucleotide polymorphism arrays in biopsies obtained over esophageal space and time. A model using 29 chromosomal features was developed for cancer risk prediction (area under receiver operator curve, 0.94). The model prediction performance was robust in two independent esophageal adenocarcinoma sets and outperformed TP53 mutation, flow cytometric DNA content, and histopathologic diagnosis of dysplasia. This study offers a strategy to reduce overdiagnosis in Barrett's esophagus and improve early detection of esophageal adenocarcinoma and potentially other cancers characterized by punctuated and catastrophic chromosomal evolution.


Subject(s)
Adenocarcinoma/diagnosis , Barrett Esophagus/diagnosis , Chromosome Aberrations , Esophageal Neoplasms/diagnosis , Risk Assessment/methods , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Biopsy , Cohort Studies , Disease Progression , Endoscopy/methods , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Female , Genome, Human , Humans , Longitudinal Studies , Male , Middle Aged , Mutation , ROC Curve , Stochastic Processes
9.
Carcinogenesis ; 35(12): 2740-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25280564

ABSTRACT

Incidence of esophageal adenocarcinoma (EA) in Western countries has increased markedly in recent decades. Although several risk factors have been identified for EA and its precursor, Barrett's esophagus (BE), including reflux, Caucasian race, male gender, obesity, and smoking, less is known about the role of inherited genetic variation. Frequent somatic mutations in the tumor suppressor genes CDKN2A and TP53 were recently reported in EA tumors, while somatic alterations at 9p (CDKN2A) and 17p (TP53) have been implicated as predictors of progression from BE to EA. Motivated by these findings, we used data from a genome-wide association study of 2515 EA cases and 3207 controls to analyze 37 germline single nucleotide polymorphisms at the CDKN2A and TP53 loci. Three CDKN2A polymorphisms were nominally associated (P < 0.05) with reduced risk of EA: rs2518720 C>T [intronic, odds ratio 0.90, P = 0.0121, q = 0.3059], rs3088440 G>A (3'UTR, odds ratio 0.84, P = 0.0186, q = 0.3059), and rs4074785 C>T (intronic, odds ratio 0.85, P = 0.0248, q = 0.3059). None of the TP53 single nucleotide polymorphisms reached nominal significance. Two of the CDKN2A variants identified were also associated with reduced risk of progression from BE to EA, when assessed in a prospective cohort of 408 BE patients: rs2518720 (hazard ratio 0.57, P = 0.0095, q = 0.0285) and rs3088440 (hazard ratio 0.34, P = 0.0368, q = 0.0552). In vitro functional studies of rs3088440, a single nucleotide polymorphism located in the seed sequence of a predicted miR-663b binding site, suggested a mechanism whereby the G>A substitution may attenuate miR-663b-mediated repression of the CDKN2A transcript. This study provides the first evidence that germline variation at the CDKN2A locus may influence EA susceptibility.


Subject(s)
Adenocarcinoma/genetics , Barrett Esophagus/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Esophageal Neoplasms/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/pathology , Aged , Barrett Esophagus/pathology , Case-Control Studies , Disease Progression , Esophageal Neoplasms/pathology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Staging , Prognosis , Risk Factors
10.
Cancer Prev Res (Phila) ; 7(1): 114-27, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24253313

ABSTRACT

All cancers are believed to arise by dynamic, stochastic somatic genomic evolution with genome instability, generation of diversity, and selection of genomic alterations that underlie multistage progression to cancer. Advanced esophageal adenocarcinomas have high levels of somatic copy number alterations. Barrett's esophagus is a risk factor for developing esophageal adenocarcinoma, and somatic chromosomal alterations (SCA) are known to occur in Barrett's esophagus. The vast majority (∼95%) of individuals with Barrett's esophagus do not progress to esophageal adenocarcinoma during their lifetimes, but a small subset develop esophageal adenocarcinoma, many of which arise rapidly even in carefully monitored patients without visible endoscopic abnormalities at the index endoscopy. Using a well-designed, longitudinal case-cohort study, we characterized SCA as assessed by single-nucleotide polymorphism arrays over space and time in 79 "progressors" with Barrett's esophagus as they approach the diagnosis of cancer and 169 "nonprogressors" with Barrett's esophagus who did not progress to esophageal adenocarcinoma over more than 20,425 person-months of follow-up. The genomes of nonprogressors typically had small localized deletions involving fragile sites and 9p loss/copy neutral LOH that generate little genetic diversity and remained relatively stable over prolonged follow-up. As progressors approach the diagnosis of cancer, their genomes developed chromosome instability with initial gains and losses, genomic diversity, and selection of SCAs followed by catastrophic genome doublings. Our results support a model of differential disease dynamics in which nonprogressor genomes largely remain stable over prolonged periods, whereas progressor genomes evolve significantly increased SCA and diversity within four years of esophageal adenocarcinoma diagnosis, suggesting a window of opportunity for early detection.


Subject(s)
Barrett Esophagus/genetics , Chromosome Aberrations , Adenocarcinoma/genetics , Adult , Aged , Biopsy , Case-Control Studies , Chromosomal Instability , Disease Progression , Endoscopy , Esophageal Neoplasms/genetics , Female , Genome, Human , Humans , Longitudinal Studies , Loss of Heterozygosity , Male , Middle Aged , Polymorphism, Single Nucleotide , Time Factors
11.
PLoS Genet ; 9(6): e1003553, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23785299

ABSTRACT

Cancer is considered an outcome of decades-long clonal evolution fueled by acquisition of somatic genomic abnormalities (SGAs). Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce cancer risk, including risk of progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). However, the cancer chemopreventive mechanisms of NSAIDs are not fully understood. We hypothesized that NSAIDs modulate clonal evolution by reducing SGA acquisition rate. We evaluated thirteen individuals with BE. Eleven had not used NSAIDs for 6.2±3.5 (mean±standard deviation) years and then began using NSAIDs for 5.6±2.7 years, whereas two had used NSAIDs for 3.3±1.4 years and then discontinued use for 7.9±0.7 years. 161 BE biopsies, collected at 5-8 time points over 6.4-19 years, were analyzed using 1Million-SNP arrays to detect SGAs. Even in the earliest biopsies there were many SGAs (284±246 in 10/13 and 1442±560 in 3/13 individuals) and in most individuals the number of SGAs changed little over time, with both increases and decreases in SGAs detected. The estimated SGA rate was 7.8 per genome per year (95% support interval [SI], 7.1-8.6) off-NSAIDs and 0.6 (95% SI 0.3-1.5) on-NSAIDs. Twelve individuals did not progress to EA. In ten we detected 279±86 SGAs affecting 53±30 Mb of the genome per biopsy per time point and in two we detected 1,463±375 SGAs affecting 180±100 Mb. In one individual who progressed to EA we detected a clone having 2,291±78 SGAs affecting 588±18 Mb of the genome at three time points in the last three of 11.4 years of follow-up. NSAIDs were associated with reduced rate of acquisition of SGAs in eleven of thirteen individuals. Barrett's cells maintained relative equilibrium level of SGAs over time with occasional punctuations by expansion of clones having massive amount of SGAs.


Subject(s)
Adenocarcinoma/genetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Barrett Esophagus/genetics , Clonal Evolution/genetics , Genomic Instability/drug effects , Adenocarcinoma/pathology , Aged , Barrett Esophagus/pathology , Biopsy , Clonal Evolution/drug effects , Disease Progression , Female , Humans , Male , Middle Aged , Phylogeny , Polymorphism, Single Nucleotide
12.
Nat Rev Cancer ; 10(2): 87-101, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20094044

ABSTRACT

The public health importance of Barrett's oesophagus lies in its association with oesophageal adenocarcinoma. The incidence of oesophageal adenocarcinoma has risen at an alarming rate over the past four decades in many regions of the Western world, and there are indications that the incidence of this disease is on the rise in Asian populations in which it has been rare. Much has been learned of host and environmental risk factors that affect the incidence of oesophageal adenocarcinoma, and data indicate that patients with Barrett's oesophagus rarely develop oesophageal adenocarcinoma. Given that 95% of oesophageal adenocarcinomas arise in individuals without a prior diagnosis of Barrett's oesophagus, what strategies can be used to reduce late diagnosis of oesophageal adenocarcinoma?


Subject(s)
Adenocarcinoma/epidemiology , Barrett Esophagus/complications , Esophageal Neoplasms/epidemiology , Adenocarcinoma/etiology , Adenocarcinoma/prevention & control , Esophageal Neoplasms/etiology , Esophageal Neoplasms/prevention & control , Genomic Instability , Humans , Risk Factors
13.
Cancer Biomark ; 5(3): 143-58, 2009.
Article in English | MEDLINE | ID: mdl-19407369

ABSTRACT

Loss of heterozygosity (LOH) has been shown to be a promising biomarker of cancer risk in patients with premalignant conditions. In this study we describe analytical validation in clinical biopsy samples of a SNP-based pyrosequencing panel targeting regions of LOH on chromosomes 17p and 9p including TP53 and CDKN2A tumor suppressor genes. Assays were tested for analytic specificity, sensitivity, efficiency, and reproducibility. Accuracy was evaluated by comparing SNP-based LOH results to those obtained by previously well-studied short tandem repeat polymorphisms (STRs) in DNA derived from different tissue sources including fresh-frozen endoscopic biopsies, samples from surgical resections, and formalin-fixed paraffin-embedded sections. A 17p/9p LOH panel comprised of 43 SNPs was designed to amplify with universal assay conditions in a two-step PCR and sequence-by-synthesis reaction that can be completed in two hours and 10 minutes. The methods presented can be a model for developing a SNP-based LOH approach targeted to any chromosomal region of interest for other premalignant conditions and this panel could be incorporated as part of a biomarker for cancer risk prediction, early detection, or as entry criteria for randomized trials.


Subject(s)
Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 9/genetics , Loss of Heterozygosity , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide , Base Sequence , Cyclin-Dependent Kinase Inhibitor p16/genetics , Genotype , Humans , Molecular Diagnostic Techniques/methods , Reproducibility of Results , Sequence Analysis, DNA , Tumor Suppressor Protein p53/genetics
14.
PLoS One ; 3(11): e3809, 2008.
Article in English | MEDLINE | ID: mdl-19043591

ABSTRACT

BACKGROUND: Mutation, promoter hypermethylation and loss of heterozygosity involving the tumor suppressor gene p16 (CDKN2a/INK4a) have been detected in a wide variety of human cancers, but much less is known concerning the frequency and spectrum of p16 mutations in premalignant conditions. METHODS AND FINDINGS: We have determined the p16 mutation spectrum for a cohort of 304 patients with Barrett's esophagus, a premalignant condition that predisposes to the development of esophageal adenocarcinoma. Forty seven mutations were detected by sequencing of p16 exon 2 in 44 BE patients (14.5%) with a mutation spectrum consistent with that caused by oxidative damage and chronic inflammation. The percentage of patients with p16 mutations increased with increasing histologic grade. In addition, samples from 3 out of 19 patients (15.8%) who underwent esophagectomy were found to have mutations. CONCLUSIONS: The results of this study suggest the environment of the esophagus in BE patients can both generate and select for clones with p16 mutations.


Subject(s)
Barrett Esophagus/genetics , Genes, p16 , Mutation , Precancerous Conditions/genetics , Adult , Aged , Aged, 80 and over , Clone Cells , Cohort Studies , DNA Mutational Analysis , Esophagus/pathology , Exons , Female , Humans , Male , Middle Aged , Young Adult
15.
Clin Cancer Res ; 14(21): 6988-95, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18980994

ABSTRACT

PURPOSE: Elevated cellular proliferation and cell cycle abnormalities, which have been associated with premalignant lesions, may be caused by inactivation of tumor suppressor genes. We measured proliferative and cell cycle fractions of biopsies from a cohort of patients with Barrett's esophagus to better understand the role of proliferation in early neoplastic progression and the association between cell cycle dysregulation and tumor suppressor gene inactivation. EXPERIMENTAL DESIGN: Cell proliferative fractions (determined by Ki67/DNA multiparameter flow cytometry) and cell cycle fractions (DNA content flow cytometry) were measured in 853 diploid biopsies from 362 patients with Barrett's esophagus. The inactivation status of CDKN2A and TP53 was assessed in a subset of these biopsies in a cross-sectional study. A prospective study followed 276 of the patients without detectable aneuploidy for an average of 6.3 years with esophageal adenocarcinoma as an end point. RESULTS: Diploid S and 4N (G(2)/tetraploid) fractions were significantly higher in biopsies with TP53 mutation and loss of heterozygosity. CDKN2A inactivation was not associated with higher Ki67-positive, diploid S, G(1), or 4N fractions. High Ki67-positive and G(1)-phase fractions were not associated with the future development of esophageal adenocarcinoma (P=0.13 and P=0.15, respectively), whereas high diploid S-phase and 4N fractions were (P=0.03 and P<0.0001, respectively). CONCLUSIONS: High Ki67-positive proliferative fractions were not associated with inactivation of CDKN2A and TP53 or future development of cancer in our cohort of patients with Barrett's esophagus. Biallelic inactivation of TP53 was associated with elevated 4N fractions, which have been associated with the future development of esophageal adenocarcinoma.


Subject(s)
Adenocarcinoma/pathology , Barrett Esophagus/complications , Barrett Esophagus/pathology , Cell Cycle , Cell Division , Esophageal Neoplasms/pathology , Adenocarcinoma/diagnosis , Adult , Aged , Cohort Studies , Esophageal Neoplasms/etiology , Female , Genes, p16 , Genes, p53 , Humans , Ki-67 Antigen/metabolism , Longitudinal Studies , Loss of Heterozygosity , Male , Middle Aged , Mutation , Prospective Studies
16.
Cancer Prev Res (Phila) ; 1(6): 413-23, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19138988

ABSTRACT

Chromosome copy gain, loss, and loss of heterozygosity (LOH) involving most chromosomes have been reported in many cancers; however, less is known about chromosome instability in premalignant conditions. 17p LOH and DNA content abnormalities have been previously reported to predict progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). Here, we evaluated genome-wide chromosomal instability in multiple stages of BE and EA in whole biopsies. Forty-two patients were selected to represent different stages of progression from BE to EA. Whole BE or EA biopsies were minced, and aliquots were processed for flow cytometry and genotyped with a paired constitutive control for each patient using 33,423 single nucleotide polymorphisms (SNP). Copy gains, losses, and LOH increased in frequency and size between early- and late-stage BE (P < 0.001), with SNP abnormalities increasing from <2% to >30% in early and late stages, respectively. A set of statistically significant events was unique to either early or late, or both, stages, including previously reported and novel abnormalities. The total number of SNP alterations was highly correlated with DNA content aneuploidy and was sensitive and specific to identify patients with concurrent EA (empirical receiver operating characteristic area under the curve = 0.91). With the exception of 9p LOH, most copy gains, losses, and LOH detected in early stages of BE were smaller than those detected in later stages, and few chromosomal events were common in all stages of progression. Measures of chromosomal instability can be quantified in whole biopsies using SNP-based genotyping and have potential to be an integrated platform for cancer risk stratification in BE.


Subject(s)
Aneuploidy , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Gene Dosage , Genome-Wide Association Study/methods , Loss of Heterozygosity , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Aged , Chromosome Aberrations , Chromosomes, Human, Pair 17 , Chromosomes, Human, Pair 9 , Cross-Sectional Studies , Disease Progression , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Female , Genome, Human , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
17.
PLoS Comput Biol ; 3(11): e244, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18052545

ABSTRACT

Single nucleotide polymorphisms (SNPs) have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution) for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes) and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims.


Subject(s)
Chromosome Mapping/methods , DNA Mutational Analysis/methods , Loss of Heterozygosity/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Animals , Base Sequence , Humans , Molecular Sequence Data
18.
PLoS Med ; 4(2): e67, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17326708

ABSTRACT

BACKGROUND: Somatic genetic CDKN2A, TP53, and DNA content abnormalities are common in many human cancers and their precursors, including esophageal adenocarcinoma (EA) and Barrett's esophagus (BE), conditions for which aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as possible chemopreventive agents; however, little is known about the ability of a biomarker panel to predict progression to cancer nor how NSAID use may modulate progression. We aimed to evaluate somatic genetic abnormalities with NSAIDs as predictors of EA in a prospective cohort study of patients with BE. METHODS AND FINDINGS: Esophageal biopsies from 243 patients with BE were evaluated at baseline for TP53 and CDKN2A (p16) alterations, tetraploidy, and aneuploidy using sequencing; loss of heterozygosity (LOH); methylation-specific PCR; and flow cytometry. At 10 y, all abnormalities, except CDKN2A mutation and methylation, contributed to EA risk significantly by univariate analysis, ranging from 17p LOH (relative risk [RR] = 10.6; 95% confidence interval [CI] 5.2-21.3, p < 0.001) to 9p LOH (RR = 2.6; 95% CI 1.1-6.0, p = 0.03). A panel of abnormalities including 17p LOH, DNA content tetraploidy and aneuploidy, and 9p LOH was the best predictor of EA (RR = 38.7; 95% CI 10.8-138.5, p < 0.001). Patients with no baseline abnormality had a 12% 10-y cumulative EA incidence, whereas patients with 17p LOH, DNA content abnormalities, and 9p LOH had at least a 79.1% 10-y EA incidence. In patients with zero, one, two, or three baseline panel abnormalities, there was a significant trend toward EA risk reduction among NSAID users compared to nonusers (p = 0.01). The strongest protective effect was seen in participants with multiple genetic abnormalities, with NSAID nonusers having an observed 10-y EA risk of 79%, compared to 30% for NSAID users (p < 0.001). CONCLUSIONS: A combination of 17p LOH, 9p LOH, and DNA content abnormalities provided better EA risk prediction than any single TP53, CDKN2A, or DNA content lesion alone. NSAIDs are associated with reduced EA risk, especially in patients with multiple high-risk molecular abnormalities.


Subject(s)
Adenocarcinoma/genetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA/genetics , Esophageal Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/epidemiology , Adult , Aged , Aged, 80 and over , Aneuploidy , Barrett Esophagus/pathology , Biopsy , Chromosomes, Human, Pair 17 , Chromosomes, Human, Pair 9 , DNA Methylation , Esophageal Neoplasms/epidemiology , Esophagoscopy , Esophagus/pathology , Female , Humans , Incidence , Longitudinal Studies , Loss of Heterozygosity , Male , Middle Aged , Mutation , Prospective Studies , Risk Assessment
19.
Cancer Epidemiol Biomarkers Prev ; 15(10): 1935-40, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17035402

ABSTRACT

BACKGROUND: Defects in DNA damage recognition and repair have been associated with a wide variety of cancers. We conducted a prospective study to determine whether mutagen sensitivity, as determined by an in vitro assay, was associated with the future development of cancer in patients with Barrett's esophagus, which is associated with increased risk of progression to esophageal adenocarcinoma. METHODS: We measured sensitivity to bleomycin in peripheral blood lymphocytes in a cohort of 220 patients with Barrett's esophagus. We followed these patients for 1,230 person-years (range, 3 months to 10.1 years; median, 6.4 years), using development of cancer and aneuploidy as end points. A subset of these patients was evaluated for inactivation of tumor-suppressor genes CDKN2A/p16 and TP53 [by mutation and loss of heterozygosity (LOH)] in their Barrett's segments at the time of, or before, the bleomycin test, and the patients were stratified by CDKN2A/p16 and TP53 status in an analysis of mutagen sensitivity and progression. RESULTS: Bleomycin-sensitive patients were found to be at significantly greater risk of developing aneuploidy (adjusted hazard ratio, 3.71; 95% confidence interval, 1.44-9.53) and nonsignificantly greater risk of cancer (adjusted hazard ratio, 1.63; 95% confidence interval, 0.71-3.75). Among patients with detectable LOH at the TP53 locus (on chromosome 17p), increasing bleomycin sensitivity was associated with increased risk of developing cancer (P(trend) < 0.001) and aneuploidy (P(trend) = 0.005). CONCLUSIONS: This study supports the hypothesis that sensitivity to mutagens increases the risk of neoplastic progression in persons with Barrett's esophagus, particularly those with 17p LOH including TP53.


Subject(s)
Adenocarcinoma/pathology , Barrett Esophagus/pathology , Esophageal Neoplasms/pathology , Mutagens/analysis , Adenocarcinoma/etiology , Adenocarcinoma/genetics , Adult , Aged , Aneuploidy , Antibiotics, Antineoplastic/pharmacology , Barrett Esophagus/complications , Barrett Esophagus/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Bleomycin/pharmacology , Chromosome Breakage/drug effects , Chromosomes, Human, Pair 17/drug effects , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 9/drug effects , Chromosomes, Human, Pair 9/genetics , Disease Progression , Esophageal Neoplasms/etiology , Esophageal Neoplasms/genetics , Female , Follow-Up Studies , Gene Expression Regulation/genetics , Genes, p16 , Genes, p53/genetics , Genetic Predisposition to Disease , Humans , Loss of Heterozygosity , Male , Middle Aged , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Prospective Studies , Sensitivity and Specificity
20.
Cancer Epidemiol Biomarkers Prev ; 15(8): 1451-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16896031

ABSTRACT

Barrett's esophagus is a useful model for the study of carcinogenesis, as the metaplastic columnar epithelium that replaces squamous esophageal epithelium is at elevated risk for development of adenocarcinoma. We examined telomere length and chromosomal instability (CIN) in Barrett's esophagus biopsies using fluorescence in situ hybridization. To study CIN, we selected centromere and locus-specific arm probes to chromosomes 17/17p (p53), 11/11q (cyclin D1), and 9/9p (p16 INK4A), loci reported to be involved in early stages of Barrett's esophagus neoplasia. Telomere shortening was observed in Barrett's esophagus epithelium at all histologic grades, whereas CIN was highest in biopsies with dysplastic changes; there was, however, considerable heterogeneity between patients in each variable. Alterations on chromosome 17 were strongly correlated with telomere length (r = 0.55; P < 0.0001) and loss of the 17p arm signal was the most common event. CIN on chromosome 11 was also associated with telomere shortening (r =0.3; P = 0.05), although 11q arm gains were most common. On chromosome 9p, arm losses were the most common finding, but chromosome 9 CIN was not strongly correlated with telomere length. We conclude that CIN is related to telomere shortening in Barrett's esophagus but varies by chromosome. Whether instability is manifested as loss or gain seems to be influenced by the chromosomal loci involved. Because telomere shortening and CIN are early events in Barrett's esophagus neoplastic progression and are highly variable among patients, it will be important to determine whether they identify a subset of patients that is at risk for more rapid neoplastic evolution.


Subject(s)
Barrett Esophagus/genetics , Chromosomal Instability , Esophageal Neoplasms/genetics , Telomere/metabolism , Adenocarcinoma/genetics , Aged , Anaphase/genetics , Barrett Esophagus/complications , Chromosomes, Human/genetics , Esophagus/metabolism , Flow Cytometry , Gastroesophageal Reflux/genetics , Gastroesophageal Reflux/pathology , Humans , In Situ Hybridization, Fluorescence/methods , Metaplasia/genetics , Middle Aged , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL