Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 37(4): 109888, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34706234

ABSTRACT

Dysregulated inflammation dominated by chemokine expression is a key feature of disease following infection with the globally important human pathogens Zika virus (ZIKV) and dengue virus, but a mechanistic understanding of how pro-inflammatory responses are initiated is lacking. Mitophagy is a quality-control mechanism that regulates innate immune signaling and cytokine production through selective degradation of damaged mitochondria. Here, we demonstrate that ZIKV nonstructural protein 5 (NS5) antagonizes mitophagy by binding to the host protein Ajuba and preventing its translocation to depolarized mitochondria where it is required for PINK1 activation and downstream signaling. Consequent mitophagy suppression amplifies the production of pro-inflammatory chemokines through protein kinase R (PKR) sensing of mitochondrial RNA. In Ajuba-/- mice, ZIKV induces early expression of pro-inflammatory chemokines associated with significantly enhanced dissemination to tissues. This work identifies Ajuba as a critical regulator of mitophagy and demonstrates a role for mitophagy in limiting systemic inflammation following infection by globally important human viruses.


Subject(s)
LIM Domain Proteins/metabolism , Mitophagy , Protein Kinases/metabolism , Signal Transduction , Zika Virus Infection/metabolism , Zika Virus/metabolism , eIF-2 Kinase/metabolism , A549 Cells , Animals , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , LIM Domain Proteins/genetics , Mice , Mice, Knockout , Protein Kinases/genetics , Vero Cells , Zika Virus/genetics , Zika Virus Infection/genetics , eIF-2 Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...