Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 98: 129595, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38141860

ABSTRACT

Screening a library of >100,000 compounds identified the substituted tetrazole compound 1 as a selective TRPML1 agonist. Both enantiomers of compound 1 were separated and profiled in vitro and in vivo. Their selectivity, ready availability and CNS penetration should enable them to serve as the tool compounds of choice in future TRPML1 channel activation studies. SAR studies on conformationally locked macrocyclic analogs further improved the TRPML1 agonist potency while retaining the selectivity.


Subject(s)
Tetrazoles , Transient Receptor Potential Channels , Transient Receptor Potential Channels/agonists , Structure-Activity Relationship , Tetrazoles/chemistry , Tetrazoles/pharmacology
2.
J Pharmacol Exp Ther ; 354(1): 43-54, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25943764

ABSTRACT

Selective deuterium substitution as a means of ameliorating clinically relevant pharmacokinetic drug interactions is demonstrated in this study. Carbon-deuterium bonds are more stable than corresponding carbon-hydrogen bonds. Using a precision deuteration platform, the two hydrogen atoms at the methylenedioxy carbon of paroxetine were substituted with deuterium. The new chemical entity, CTP-347 [(3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine], demonstrated similar selectivity for the serotonin receptor, as well as similar neurotransmitter uptake inhibition in an in vitro rat synaptosome model, as unmodified paroxetine. However, human liver microsomes cleared CTP-347 faster than paroxetine as a result of decreased inactivation of CYP2D6. In phase 1 studies, CTP-347 was metabolized more rapidly in humans and exhibited a lower pharmacokinetic accumulation index than paroxetine. These alterations in the metabolism profile resulted in significantly reduced drug-drug interactions between CTP-347 and two other CYP2D6-metabolized drugs: tamoxifen (in vitro) and dextromethorphan (in humans). Our results show that precision deuteration can improve the metabolism profiles of existing pharmacotherapies without affecting their intrinsic pharmacologies.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors/pharmacology , Cytochrome P-450 CYP2D6/metabolism , Paroxetine/pharmacology , Animals , Brain/metabolism , Cytochrome P-450 CYP2D6 Inhibitors/pharmacokinetics , Deuterium , Double-Blind Method , Drug Interactions , Female , Humans , Isotope Labeling , Microsomes, Liver/metabolism , Paroxetine/pharmacokinetics , Paroxetine/therapeutic use , Radioligand Assay , Rats , Receptors, Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Synaptosomes/metabolism , Tamoxifen/metabolism
3.
J Mass Spectrom ; 48(6): 640-50, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23722954

ABSTRACT

Atazanavir (marketed as Reyataz®) is an important member of the human immunodeficiency virus protease inhibitor class. LC-UV-MS(n) experiments were designed to identify metabolites of atazanavir after incubations in human hepatocytes. Five major (M1-M5) and seven minor (M7-M12) metabolites were identified. The most abundant metabolite, M1, was formed by a mono-oxidation on the t-butyl group at the non-prime side. The second most abundant metabolite, M2, was also a mono-oxidation product, which has not yet been definitively identified. Metabolites, M3 and M4, were structural isomers, which were apparently formed by oxidative carbamate hydrolysis. The structure of M5 comprises the non-prime side of atazanavir which contains a pyridinyl-benzyl group. Metabolite M6a was formed by the cleavage of the pyridinyl-benzyl side chain, as evidenced by the formation of the corresponding metabolic product, the pyridinyl-benzoic acid (M6b). Mono-oxidation also occurred on the pyridinyl-benzyl group to produce the low abundance metabolite M8. Oxidation of the terminal methyl groups produced M9 and M10, respectively, which have low chemical stability. Trace-level metabolites of di-oxidations, M11 and M12, were also detected, but the complexity of the molecule precluded identification of the second oxidation site. To our knowledge, metabolites M6b and M8 have not been reported.


Subject(s)
Chromatography, High Pressure Liquid/methods , Oligopeptides/chemistry , Pyridines/chemistry , Tandem Mass Spectrometry/methods , Atazanavir Sulfate , Cells, Cultured , Female , Hepatocytes/chemistry , Hepatocytes/metabolism , Humans , Ions/analysis , Ions/chemistry , Ions/metabolism , Male , Oligopeptides/analysis , Oligopeptides/metabolism , Pyridines/analysis , Pyridines/metabolism
4.
Drug Metab Dispos ; 34(9): 1600-5, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16790553

ABSTRACT

Apparent intrinsic clearance (CL(int,app)) of 7-ethoxycoumarin, phenacetin, propranolol, and midazolam was measured using rat and human liver microsomes and freshly isolated and cryopreserved hepatocytes to determine factors responsible for differences in rates of metabolism in these systems. The cryopreserved and freshly isolated hepatocytes generally provided similar results, although there was greater variability using the latter system. The CL(int,app) values in hepatocytes are observed to be lower than that in microsomes, and this difference becomes greater for compounds with high CL(int,app). This could partly be attributed to the differences in the free fraction (fu). The fu in hepatocyte incubations (fu,hep-inc) was influenced not only by the free fraction of compounds in the incubation buffer (fu,buffer) but also by the rate constants of uptake (k(up)) and metabolism (k(met)). This report provides a new derivation for fu,hep-inc, which can be expressed as fu,hep-inc = [k(up)/(k(met) + k(up))]/[1 + (C(hep)/C(buffer)) x (V(hep)/V(buffer))], where the C(hep), C(buffer), V(hep), and V(buffer) represent the concentrations of a compound in hepatocytes and buffer and volumes of hepatocytes and buffer, respectively. For midazolam, the fu,hep-inc was calculated, and the maximum metabolism rate in hepatocytes was shown to be limited by the uptake rate.


Subject(s)
Drug Evaluation, Preclinical , Hepatocytes/metabolism , Microsomes, Liver/metabolism , Animals , Biological Transport , Coumarins/metabolism , Cryopreservation , Diffusion , Drug Evaluation, Preclinical/methods , Humans , In Vitro Techniques , Kinetics , Metabolic Clearance Rate , Midazolam/metabolism , Phenacetin/metabolism , Propranolol/metabolism , Rats , Reproducibility of Results
5.
Drug Metab Dispos ; 34(4): 702-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16443666

ABSTRACT

Bortezomib (Velcade, PS-341), a dipeptidyl boronic acid, is a first-in-class proteasome inhibitor approved in 2003 for the treatment of multiple myeloma. In a preclinical toxicology study, bortezomib-treated rats resulted in liver enlargement (35%). Ex vivo analyses of the liver samples showed an 18% decrease in cytochrome P450 (P450) content, a 60% increase in palmitoyl coenzyme A beta-oxidation activity, and a 41 and 23% decrease in CYP3A protein expression and activity, respectively. Furthermore, liver samples of bortezomib-treated rats had little change in CYP2B and CYP4A protein levels and activities. To address the likelihood of clinical drug-drug interactions, the P450 inhibition potential of bortezomib and its major deboronated metabolites M1 and M2 and their dealkylated metabolites M3 and M4 was evaluated in human liver microsomes for the major P450 isoforms 1A2, 2C9, 2C19, 2D6, and 3A4/5. Bortezomib, M1, and M2 were found to be mild inhibitors of CYP2C19 (IC(50) approximately 18.0, 10.0, and 13.2 microM, respectively), and M1 was also a mild inhibitor of CYP2C9 (IC(50) approximately 11.5 microM). However, bortezomib, M1, M2, M3, and M4 did not inhibit other P450s (IC(50) values > 30 microM). There also was no time-dependent inhibition of CYP3A4/5 by bortezomib or its major metabolites. Based on these results, no major P450-mediated clinical drug-drug interactions are anticipated for bortezomib or its major metabolites. To our knowledge, this is the first report on P450-mediated drug-drug interaction potential of proteasome inhibitors or boronic acid containing therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Microsomes, Liver/enzymology , Pyrazines/pharmacology , Animals , Antineoplastic Agents/metabolism , Bortezomib , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions , Enzyme Inhibitors/pharmacology , Female , Humans , Kinetics , Liver/drug effects , Liver/enzymology , Liver/pathology , Organ Size , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...