Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12454, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32699251

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 10(1): 7634, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376905

ABSTRACT

Peatlands accumulate organic matter (OM) under anaerobic conditions. After drainage for forestry or agriculture, microbial respiration and peat oxidation induce OM losses and change the stoichiometry of the remaining organic material. Here, we (i) evaluate whether land use (cropland CL, grassland GL, forest FL, natural peatland NL) is associated with different peat stoichiometry, (ii) study how peat stoichiometry changes with OM content and (iii) infer the fate of nitrogen upon soil degradation. Organic C and soil N were measured for 1310 samples from 48 sites in Switzerland, and H and O for 1165. The soil OM content and C/N ratio were most sensitive to land use and are hence best suited as indicators for peatland degradation. OM contents (CL < GL < FL < NL), H/C, O/C, C/N ratios, and OM oxidation states were significantly different between land use types in top- and subsoils. With decreasing bulk OM content, C was relatively depleted while H and particularly N were higher. The data suggest very high N mobilization rates from strongly decomposed peat in agricultural topsoil. A comparison to peat C and N from mostly intact peatlands of the Northern hemisphere reveals that agriculture and, to a lesser extent, forestry induce a progressed state of soil degradation.

4.
BMC Evol Biol ; 11: 39, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21303519

ABSTRACT

BACKGROUND: The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora--South Africa's biodiversity hotspot--through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years. RESULTS: Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology. CONCLUSIONS: Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record.


Subject(s)
Biodiversity , Biological Evolution , Climate Change , Phylogeny , Ecology/methods , Magnoliopsida/classification , Magnoliopsida/genetics , South Africa
5.
Mol Phylogenet Evol ; 51(1): 44-53, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18411064

ABSTRACT

Like island-endemic taxa, whose origins are expected to postdate the appearance of the islands on which they occur, biome-endemic taxa should be younger than the biomes to which they are endemic. Accordingly, the ages of biome-endemic lineages may offer insights into biome history. In this study, we used the ages of multiple lineages to explore the origin and diversification of two southern African biomes whose remarkable floristic richness and endemism has identified them as global biodiversity hotspots (succulent karoo and fynbos). We used parsimony optimization to identify succulent karoo- and fynbos-endemic lineages across 17 groups of plants, for which dated phylogenies had been inferred using a relaxed Bayesian (BEAST) approach. All succulent karoo-endemic lineages were less than 17.5 My old, the majority being younger than 10 My. This is largely consistent with suggestions that this biome is the product of recent radiation, probably triggered by climatic deterioration since the late Miocene. In contrast, fynbos-endemic lineages showed a broader age distribution, with some lineages originating in the Oligocene, but most being more recent. Also, in groups having both succulent karoo- and fynbos-endemic lineages, there was a tendency for the latter to be older. These patterns reflect the greater antiquity of fynbos, but also indicate considerable recent speciation, probably through a combination of climatically-induced refugium fragmentation and adaptive radiation.


Subject(s)
Biodiversity , Biological Evolution , Magnoliopsida/genetics , Phylogeny , Africa, Southern , Bayes Theorem , Genetic Speciation , Magnoliopsida/classification
6.
Mol Phylogenet Evol ; 48(3): 1106-19, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18599319

ABSTRACT

Phylogeny reconstruction is challenging when branch lengths vary and when different genetic loci show conflicting signals. The number of DNA sequence characters required to obtain robust support for all the nodes in a phylogeny becomes greater with denser taxon sampling. We test the usefulness of an approach mixing densely sampled, variable non-coding sequences (trnL-F; rpl16; atpB-rbcL; ITS) with sparsely sampled, more conservative protein coding and ribosomal sequences (matK; ndhF; rbcL; 26S), for the grass subfamily Danthonioideae. Previous phylogenetic studies of Danthonioideae revealed extensive generic paraphyly, but were often impeded by insufficient character and taxon sampling and apparent inter-gene conflict. Our variably-sampled supermatrix approach allowed us to represent 79% of the species with up to c. 9900 base pairs for taxa representing the major clades. A 'taxon duplication' approach for taxa with conflicting phylogenetic signals allowed us to combine the data whilst representing the differences between chloroplast and nuclear encoded gene trees. This approach efficiently improves resolution and support whilst maximising representation of taxa and their sometimes composite evolutionary histories, resulting in a phylogeny of the Danthonioideae that will be useful both for a wide range of evolutionary studies and to inform forthcoming realignment of generic delimitations in the subfamily.


Subject(s)
Poaceae/genetics , Bayes Theorem , Cell Nucleus/metabolism , DNA Primers/chemistry , DNA, Chloroplast/genetics , DNA, Plant/genetics , Evolution, Molecular , Genes, Plant , Genetic Variation , Models, Genetic , Phylogeny , Polymerase Chain Reaction , Species Specificity
7.
Proc Biol Sci ; 274(1609): 535-43, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17476774

ABSTRACT

The build-up of biodiversity is the result of immigration and in situ speciation. We investigate these two processes for four lineages (Disa, Irideae p.p., the Pentaschistis clade and Restionaceae) that are widespread in the Afrotemperate flora. These four lineages may be representative of the numerous clades which are species rich in the Cape and also occur in the highlands of tropical Africa. It is as yet unclear in which direction the lineages spread. Three hypotheses have been proposed: (i) a tropical origin with a southward migration towards the Cape, (ii) a Cape origin with a northward migration into tropical Africa, and (iii) vicariance. None of these hypotheses has been thoroughly tested. We reconstruct the historical biogeography of the four lineages using likelihood optimization onto molecular phylogenies. We find that tropical taxa are nested within a predominantly Cape clade. There is unidirectional migration from the Cape into the Drakensberg and from there northwards into tropical Africa. The amount of in situ diversification differs between areas and clades. Dating estimates show that the migration into tropical East Africa has occurred in the last 17 Myr, consistent with the Mio-Pliocene formation of the mountains in this area.


Subject(s)
Biodiversity , Genetic Speciation , Magnoliopsida/classification , Africa , Bayes Theorem , Climate , Magnoliopsida/physiology , Orchidaceae/classification , Orchidaceae/physiology , Phylogeny , Poaceae/classification , Poaceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...