Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 573, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750123

ABSTRACT

Vesicles carry out many essential functions within cells through the processes of endocytosis, exocytosis, and passive and active transport. This includes transporting and delivering molecules between different parts of the cell, and storing and releasing neurotransmitters in neurons. To date, computational simulation of these key biological players has been rather limited and has not advanced at the same pace as other aspects of cell modeling, restricting the realism of computational models. We describe a general vesicle modeling tool that has been designed for wide application to a variety of cell models, implemented within our software STochastic Engine for Pathway Simulation (STEPS), a stochastic reaction-diffusion simulator that supports realistic reconstructions of cell tissue in tetrahedral meshes. The implementation is validated in an extensive test suite, parallel performance is demonstrated in a realistic synaptic bouton model, and example models are visualized in a Blender extension module.


Subject(s)
Computer Simulation , Diffusion , Models, Biological , Software , Synaptic Vesicles/metabolism , Exocytosis/physiology , Animals , Humans , Endocytosis/physiology , Neurons/physiology , Neurons/metabolism , Stochastic Processes
2.
Cell Rep ; 22(3): 722-733, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29346769

ABSTRACT

Long-term depression (LTD) and long-term potentiation (LTP) in the cerebellum are important for motor learning. However, the signaling mechanisms controlling whether LTD or LTP is induced in response to synaptic stimulation remain obscure. Using a unified model of LTD and LTP at the cerebellar parallel fiber-Purkinje cell (PF-PC) synapse, we delineate the coordinated pre- and postsynaptic signaling that determines the direction of plasticity. We show that LTP is the default response to PF stimulation above a well-defined frequency threshold. However, if the calcium signal surpasses the threshold for CaMKII activation, then an ultrasensitive "on switch" activates an extracellular signal-regulated kinase (ERK)-based positive feedback loop that triggers LTD instead. This postsynaptic feedback loop is sustained by another, trans-synaptic, feedback loop that maintains nitric oxide production throughout LTD induction. When full depression is achieved, an automatic "off switch" inactivates the feedback loops, returning the network to its basal state and demarcating the end of the early phase of LTD.


Subject(s)
Cerebellum/pathology , Depression/diagnosis , Animals , Depression/pathology , Humans , Mice
3.
Front Pharmacol ; 7: 211, 2016.
Article in English | MEDLINE | ID: mdl-27471468

ABSTRACT

The state of consciousness induced by N,N-dimethyltryptamine (DMT) is one of the most extraordinary of any naturally-occurring psychedelic substance. Users consistently report the complete replacement of normal subjective experience with a novel "alternate universe," often densely populated with a variety of strange objects and other highly complex visual content, including what appear to be sentient "beings." The phenomenology of the DMT state is of great interest to psychology and calls for rigorous academic enquiry. The extremely short duration of DMT effects-less than 20 min-militates against single dose administration as the ideal model for such enquiry. Using pharmacokinetic modeling and DMT blood sampling data, we demonstrate that the unique pharmacological characteristics of DMT, which also include a rapid onset and lack of acute tolerance to its subjective effects, make it amenable to administration by target-controlled intravenous infusion. This is a technology developed to maintain a stable brain concentration of anesthetic drugs during surgery. Simulations of our model demonstrate that this approach will allow research subjects to be induced into a stable and prolonged DMT experience, making it possible to carefully observe its psychological contents, and provide more extensive accounts for subsequent analyses. This model would also be valuable in performing functional neuroimaging, where subjects are required to remain under the influence of the drug for extended periods. Finally, target-controlled intravenous infusion of DMT may aid the development of unique psychotherapeutic applications of this psychedelic agent.

4.
PLoS Comput Biol ; 12(1): e1004664, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26807999

ABSTRACT

The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins-glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)-regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process.


Subject(s)
Cerebellum/physiology , Computer Simulation , Long-Term Synaptic Depression/physiology , Models, Neurological , Receptors, AMPA/metabolism , Cerebellum/cytology , Computational Biology , Dendritic Spines , Phosphorylation , Synapses/metabolism
5.
Front Hum Neurosci ; 9: 346, 2015.
Article in English | MEDLINE | ID: mdl-26124719

ABSTRACT

The psychological state elicited by the classic psychedelics drugs, such as LSD and psilocybin, is one of the most fascinating and yet least understood states of consciousness. However, with the advent of modern functional neuroimaging techniques, the effect of these drugs on neural activity is now being revealed, although many of the varied phenomenological features of the psychedelic state remain challenging to explain. Integrated information theory (IIT) is one of the foremost contemporary theories of consciousness, providing a mathematical formalization of both the quantity and quality of conscious experience. This theory can be applied to all known states of consciousness, including the psychedelic state. Using the results of functional neuroimaging data on the psychedelic state, the effects of psychedelic drugs on both the level and structure of consciousness can be explained in terms of the conceptual framework of IIT. This new IIT-based model of the psychedelic state provides an explanation for many of its phenomenological features, including unconstrained cognition, alterations in the structure and meaning of concepts and a sense of expanded awareness. This model also suggests that whilst cognitive flexibility, creativity, and imagination are enhanced during the psychedelic state, this occurs at the expense of cause-effect information, as well as degrading the brain's ability to organize, categorize, and differentiate the constituents of conscious experience. Furthermore, the model generates specific predictions that can be tested using a combination of functional imaging techniques, as has been applied to the study of levels of consciousness during anesthesia and following brain injury.

6.
Nat Prod Rep ; 26(2): 266-80, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19177224

ABSTRACT

The biosynthetic pathways to polyketide-derived polycyclic ethers, in bacteria, plants and marine organisms, have, until now, tended to be considered separately. The purpose of this article is to provide an integrated review of the common mechanistic aspects of polyether biosynthesis from these diverse sources. In particular, the focus will be on the proposed mechanisms of oxidative cyclisation, as well as on the known differences in polyketide chain construction between the terrestrial and marine polyethers.1 Introduction, 2 Fatty acid and polyketide biosynthesis, 3 Polyether ionophores, 4 The annonaceous acetogenins, 5 Marine polyethers, 6 Chain construction in polyether biosynthesis, 7 Acknowledgements, 8 References.


Subject(s)
Ethers/chemical synthesis , Macrolides/chemical synthesis , Cyclization , Ethers/chemistry , Fatty Acids/chemical synthesis , Fatty Acids/chemistry , Macrolides/chemistry , Marine Biology , Molecular Structure
8.
Chem Biol ; 13(4): 453-60, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16632258

ABSTRACT

Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the monBI and monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9-epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis.


Subject(s)
Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Genes, Bacterial , Monensin/biosynthesis , Monensin/chemistry , Streptomyces/genetics , Streptomyces/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Base Sequence , DNA, Bacterial/genetics , Epoxide Hydrolases/chemistry , Gene Deletion , Models, Molecular , Molecular Sequence Data , Rhodococcus/enzymology , Scattering, Radiation , Sequence Homology, Amino Acid , Species Specificity , Streptomyces/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...