Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nat Commun ; 14(1): 7009, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919320

ABSTRACT

Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Humans , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , KRIT1 Protein/genetics , Proto-Oncogene Proteins/genetics , Apoptosis Regulatory Proteins/genetics , Mutation , Sequence Analysis, DNA
2.
Genetics ; 224(4)2023 08 09.
Article in English | MEDLINE | ID: mdl-37098137

ABSTRACT

Sturge-Weber Syndrome (SWS) is a sporadic (non-inherited) syndrome characterized by capillary vascular malformations in the facial skin, leptomeninges, or the choroid. A hallmark feature is the mosaic nature of the phenotype. SWS is caused by a somatic mosaic mutation in the GNAQ gene (p.R183Q), leading to activation of the G protein, Gαq. Decades ago, Rudolf Happle hypothesized SWS as an example of "paradominant inheritance", that is, a "lethal gene (mutation) surviving by mosaicism". He predicted that the "presence of the mutation in the zygote will lead to death of the embryo at an early stage of development". We have created a mouse model for SWS using gene targeting to conditionally express the GNAQ p.R183Q mutation. We have employed two different Cre-drivers to examine the phenotypic effects of expression of this mutation at different levels and stages of development. As predicted by Happle, global, ubiquitous expression of this mutation in the blastocyst stage results in 100% embryonic death. The majority of these developing embryos show vascular defects consistent with the human vascular phenotype. By contrast, global but mosaic expression of the mutation enables a fraction of the embryos to survive, but those that survive to birth and beyond do not exhibit obvious vascular defects. These data validate Happle's paradominant inheritance hypothesis for SWS and suggest the requirement of a tight temporal and developmental window of mutation expression for the generation of the vascular phenotype. Furthermore, these engineered murine alleles provide the template for the development of a mouse model of SWS that acquires the somatic mutation during embryonic development, but permits the embryo to progress to live birth and beyond, so that postnatal phenotypes can also be investigated. These mice could then also be employed in pre-clinical studies of novel therapies.


Subject(s)
Sturge-Weber Syndrome , Vascular Malformations , Animals , Humans , Male , Mice , Capillaries/metabolism , Mutation , Sturge-Weber Syndrome/genetics , Sturge-Weber Syndrome/metabolism , Sturge-Weber Syndrome/therapy , Vascular Malformations/genetics
4.
Hum Genet ; 141(11): 1761-1769, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35488064

ABSTRACT

Cerebral cavernous malformations (CCM) are vascular malformations consisting of collections of enlarged capillaries occurring in the brain or spinal cord. These vascular malformations can occur sporadically or susceptibility to develop these can be inherited as an autosomal dominant trait due to mutation in one of three genes. Over a decade ago, we described a 77.6 Kb germline deletion spanning exons 2-10 in the CCM2 gene found in multiple affected individuals from seemingly unrelated families. Segregation analysis using linked, microsatellite markers indicated that this deletion may have arisen at least twice independently. In the ensuing decades, many more CCM patients have been identified with this deletion. In this present study we examined 27 reportedly unrelated affected individuals with this deletion. To investigate the origin of the deletion at base pair level resolution, we sequenced approximately 10 Kb upstream and downstream from the recombination junction on the deleted allele. All patients showed the identical SNP haplotype across this combined 20 Kb interval. In parallel, genealogical records have traced 11 of these individuals to five separate pedigrees dating as far back as the 1600-1700s. These haplotype and genealogical data suggest that these families and the remaining "unrelated" samples converge on a common ancestor due to a founder mutation occurring centuries ago on the North American continent. We also note that another gene, NACAD, is included in this deletion. Although patient self-reporting does not indicate an apparent phenotypic consequence for heterozygous deletion of NACAD, further investigation is warranted for these patients.


Subject(s)
Carrier Proteins/genetics , Hemangioma, Cavernous, Central Nervous System , Proto-Oncogene Proteins , Hemangioma, Cavernous, Central Nervous System/genetics , Humans , Intellectual Disability , Micrognathism , Mutation , Pedigree , Proto-Oncogene Proteins/genetics , Ribs/abnormalities , Sequence Deletion
6.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33301422

ABSTRACT

Propranolol, a pleiotropic ß-adrenergic blocker, has been anecdotally reported to reduce cerebral cavernous malformations (CCMs) in humans. However, propranolol has not been rigorously evaluated in animal models, nor has its mechanism of action in CCM been defined. We report that propranolol or its S(-) enantiomer dramatically reduced embryonic venous cavernomas in ccm2 mosaic zebrafish, whereas R-(+)-propranolol, lacking ß antagonism, had no effect. Silencing of the ß1, but not ß2, adrenergic receptor mimicked the beneficial effects of propranolol in a zebrafish CCM model, as did the ß1-selective antagonist metoprolol. Thus, propranolol ameliorated cavernous malformations by ß1 adrenergic antagonism in zebrafish. Oral propranolol significantly reduced lesion burden in 2 chronic murine models of the exceptionally aggressive Pdcd10/Ccm3 form of CCM. Propranolol or other ß1-selective antagonists may be beneficial in CCM disease.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/adverse effects , Hemangioma, Cavernous, Central Nervous System , Propranolol/pharmacology , Adrenergic beta-1 Receptor Antagonists/pharmacology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Female , G-Protein-Coupled Receptor Kinase 2/genetics , G-Protein-Coupled Receptor Kinase 2/metabolism , Hemangioma, Cavernous, Central Nervous System/chemically induced , Hemangioma, Cavernous, Central Nervous System/drug therapy , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
Angiogenesis ; 23(4): 651-666, 2020 11.
Article in English | MEDLINE | ID: mdl-32710309

ABSTRACT

Cerebral cavernous malformations (CCMs) are ectatic capillary-venous malformations that develop in approximately 0.5% of the population. Patients with CCMs may develop headaches, focal neurologic deficits, seizures, and hemorrhages. While symptomatic CCMs, depending upon the anatomic location, can be surgically removed, there is currently no pharmaceutical therapy to treat CCMs. Several mouse models have been developed to better understand CCM pathogenesis and test therapeutics. The most common mouse models induce a large CCM burden that is anatomically restricted to the cerebellum and contributes to lethality in the early days of life. These inducible models thus have a relatively short period for drug administration. We developed an inducible CCM3 mouse model that develops CCMs after weaning and provides a longer period for potential therapeutic intervention. Using this new model, three recently proposed CCM therapies, fasudil, tempol, vitamin D3, and a combination of the three drugs, failed to substantially reduce CCM formation when treatment was administered for 5 weeks, from postnatal day 21 (P21) to P56. We next restricted Ccm3 deletion to the brain vasculature and provided greater time (121 days) for CCMs to develop chronic hemorrhage, recapitulating the human lesions. We also developed the first model of acute CCM hemorrhage by injecting mice harboring CCMs with lipopolysaccharide. These efficient models will enable future drug studies to more precisely target clinically relevant features of CCM disease: CCM formation, chronic hemorrhage, and acute hemorrhage.


Subject(s)
Hemangioma, Cavernous, Central Nervous System/pathology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Acute Disease , Animals , Apoptosis Regulatory Proteins/deficiency , Brain/blood supply , Brain/pathology , Cholecalciferol/pharmacology , Chronic Disease , Cyclic N-Oxides/pharmacology , Disease Models, Animal , Gene Deletion , Hemangioma, Cavernous, Central Nervous System/complications , Hemorrhage/complications , Lipopolysaccharides , Mice, Inbred C57BL , Models, Biological , Phenotype , Spin Labels
8.
Transl Stroke Res ; 11(3): 365-376, 2020 06.
Article in English | MEDLINE | ID: mdl-31446620

ABSTRACT

Cavernous angioma (CA) is a vascular pathology caused by loss of function in one of the 3 CA genes (CCM1, CCM2, and CCM3) that result in rho kinase (ROCK) activation. We investigated a novel ROCK2 selective inhibitor for the ability to reduce brain lesion formation, growth, and maturation. We used genetic methods to explore the use of a ROCK2-selective kinase inhibitor to reduce growth and hemorrhage of CAs. The role of ROCK2 in CA was investigated by crossing Rock1 or Rock2 hemizygous mice with Ccm1 or Ccm3 hemizygous mice, and we found reduced lesions in the Rock2 hemizygous mice. A ROCK2-selective inhibitor, BA-1049 was used to investigate efficacy in reducing CA lesions after oral administration to Ccm1+/- and Ccm3+/- mice that were bred into a mutator background. After assessing the dose range effective to target brain endothelial cells in an ischemic brain model, Ccm1+/- and Ccm3+/- transgenic mice were treated for 3 (Ccm3+/-) or 4 months (Ccm1+/-), concurrently, randomized to receive one of three doses of BA-1049 in drinking water, or placebo. Lesion volumes were assessed by micro-computed tomography. BA-1049 reduced activation of ROCK2 in Ccm3+/-Trp53-/- lesions. Ccm1+/-Msh2-/- (n=68) and Ccm3+/-Trp53-/- (n=71) mice treated with BA-1049 or placebo showed a significant dose-dependent reduction in lesion volume after treatment with BA-1049, and a reduction in hemorrhage (iron deposition) near lesions at all doses. These translational studies show that BA-1049 is a promising therapeutic agent for the treatment of CA, a disease with no current treatment except surgical removal of the brain lesions.


Subject(s)
Brain/drug effects , Brain/pathology , Hemangioma, Cavernous/drug therapy , Hemangioma, Cavernous/pathology , Protein Kinase Inhibitors/administration & dosage , rho-Associated Kinases/antagonists & inhibitors , Administration, Oral , Animals , Apoptosis Regulatory Proteins/genetics , KRIT1 Protein/genetics , Mice, Inbred C57BL , Mice, Transgenic , Tumor Suppressor Protein p53/genetics , rho-Associated Kinases/genetics
9.
Am J Hum Genet ; 105(5): 894-906, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31630786

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is a Mendelian disease characterized by vascular malformations (VMs) including visceral arteriovenous malformations and mucosal telangiectasia. HHT is caused by loss-of-function (LoF) mutations in one of three genes, ENG, ACVRL1, or SMAD4, and is inherited as an autosomal-dominant condition. Intriguingly, the constitutional mutation causing HHT is present throughout the body, yet the multiple VMs in individuals with HHT occur focally, rather than manifesting as a systemic vascular defect. This disconnect between genotype and phenotype suggests that a local event is necessary for the development of VMs. We investigated the hypothesis that local somatic mutations seed the formation HHT-related telangiectasia in a genetic two-hit mechanism. We identified low-frequency somatic mutations in 9/19 telangiectasia through the use of next-generation sequencing. We established phase for seven of nine samples, which confirms that the germline and somatic mutations in all seven samples exist in trans configuration; this is consistent with a genetic two-hit mechanism. These combined data suggest that bi-allelic loss of ENG or ACVRL1 may be a required event in the development of telangiectasia, and that rather than haploinsufficiency, VMs in HHT are caused by a Knudsonian two-hit mechanism.


Subject(s)
Activin Receptors, Type II/genetics , Endoglin/genetics , Mutation/genetics , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Vascular Malformations/genetics , Aged , Alleles , Arteriovenous Malformations/genetics , Female , Genotype , Humans , Loss of Heterozygosity/genetics , Male , Phenotype
10.
Stroke ; 50(3): 738-744, 2019 03.
Article in English | MEDLINE | ID: mdl-30744543

ABSTRACT

Background and Purpose- Previously, murine models Krit1 +/- Msh2 -/- and Ccm2 +/- Trp53 -/- showed a reduction or no effect on cerebral cavernous malformation (CCM) burden and favorable effects on lesional hemorrhage by the robust Rock (Rho-associated protein kinase) inhibitor fasudil and by simvastatin (a weak pleiotropic inhibitor of Rock). Herein, we concurrently investigated treatment of the more aggressive Pdcd10/Ccm3 model with fasudil, simvastatin, and higher dose atorvastatin to determined effectiveness of Rock inhibition. Methods- The murine models, Pdcd10 +/- Trp53 -/- and Pdcd10 +/- Msh2 -/-, were contemporaneously treated from weaning to 5 months of age with fasudil (100 mg/kg per day in drinking water, n=9), simvastatin (40 mg/kg per day in chow, n=11), atorvastatin (80 mg/kg per day in chow, n=10), or with placebo (n=16). We assessed CCM volume in mouse brains by microcomputed tomography. Lesion burden was calculated as lesion volume normalized to total brain volume. We analyzed chronic hemorrhage in CCM lesions by quantitative intensity of Perls staining in brain sections. Results- The Pdcd10 +/- Trp53 -/- /Msh2 -/- models showed a mean CCM lesion burden per mouse reduction from 0.0091 in placebos to 0.0042 ( P=0.027) by fasudil, and to 0.0047 ( P=0.025) by atorvastatin treatment, but was not changed significantly by simvastatin. Hemorrhage intensity per brain was commensurately decreased by Rock inhibition. Conclusions- These results support the exploration of proof of concept effect of high-dose atorvastatin on human CCM disease for potential therapeutic testing.


Subject(s)
Enzyme Inhibitors/therapeutic use , Hemangioma, Cavernous, Central Nervous System/drug therapy , Hemangioma, Cavernous, Central Nervous System/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/genetics , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Animals , Apoptosis Regulatory Proteins , Atorvastatin/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Intracranial Hemorrhages/diagnostic imaging , KRIT1 Protein/genetics , Mice , Mice, Knockout , Simvastatin/therapeutic use , X-Ray Microtomography
11.
Lab Invest ; 99(3): 319-330, 2019 03.
Article in English | MEDLINE | ID: mdl-29946133

ABSTRACT

Cerebral cavernous malformations (CCMs) are clusters of dilated capillaries that affect around 0.5% of the population. CCMs exist in two forms, sporadic and familial. Mutations in three documented genes, KRIT1(CCM1), CCM2, and PDCD10(CCM3), cause the autosomal dominant form of the disease, and somatic mutations in these same genes underlie lesion development in the brain. Murine models with constitutive or induced loss of respective genes have been applied to study disease pathobiology and therapeutic manipulations. We aimed to analyze the phenotypic characteristic of two main groups of models, the chronic heterozygous models with sensitizers promoting genetic instability, and the acute neonatal induced homozygous knockout model. Acute model mice harbored a higher lesion burden than chronic models, more localized in the hindbrain, and largely lacking iron deposition and inflammatory cell infiltrate. The chronic model mice showed a lower lesion burden localized throughout the brain, with significantly greater perilesional iron deposition, immune B- and T-cell infiltration, and less frequent junctional protein immunopositive endothelial cells. Lesional endothelial cells in both models expressed similar phosphorylated myosin light chain immunopositivity indicating Rho-associated protein kinase activity. These data suggest that acute models are better suited to study the initial formation of the lesion, while the chronic models better reflect lesion maturation, hemorrhage, and inflammatory response, relevant pathobiologic features of the human disease.


Subject(s)
Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Acute Disease , Animals , Apoptosis Regulatory Proteins , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Brain/blood supply , Brain/metabolism , Brain/pathology , Cerebellum/blood supply , Cerebellum/metabolism , Cerebellum/pathology , Chronic Disease , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hemangioma, Cavernous, Central Nervous System/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Iron/metabolism , KRIT1 Protein/genetics , Mice , Mice, Knockout , Mice, Transgenic , Microfilament Proteins/genetics , Mutation , Occludin/metabolism , Phenotype , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , rho-Associated Kinases/metabolism
12.
Stroke ; 48(1): 187-194, 2017 01.
Article in English | MEDLINE | ID: mdl-27879448

ABSTRACT

BACKGROUND AND PURPOSE: We sought to compare the effect of chronic treatment with commonly tolerated doses of Fasudil, a specific RhoA kinase (ROCK) inhibitor, and simvastatin (with pleiotropic effects including ROCK inhibition) on cerebral cavernous malformation (CCM) genesis and maturation in 2 models that recapitulate the human disease. METHODS: Two heterozygous murine models, Ccm1+/-Msh2-/- and Ccm2+/-Trp53-/-, were treated from weaning to 4 to 5 months of age with Fasudil (100 mg/kg per day), simvastatin (40 mg/kg per day) or with placebo. Mouse brains were blindly assessed for CCM lesion burden, nonheme iron deposition (as a quantitative measure of chronic lesional hemorrhage), and ROCK activity. RESULTS: Fasudil, but not simvastatin, significantly decreased mature CCM lesion burden in Ccm1+/-Msh2-/- mice, and in meta-analysis of both models combined, when compared with mice receiving placebo. Fasudil and simvastatin both significantly decreased the integrated iron density per mature lesion area in Ccm1+/-Msh2-/- mice, and in both models combined, compared with mice given placebo. ROCK activity in mature lesions of Ccm1+/-Msh2-/- mice was similar with both treatments. Fasudil, but not simvastatin, improved survival in Ccm1+/-Msh2-/- mice. Fasudil and simvastatin treatment did not affect survival or lesion development significantly in Ccm2+/-Trp53-/- mice alone, and Fasudil benefit seemed limited to males. CONCLUSIONS: ROCK inhibitor Fasudil was more efficacious than simvastatin in improving survival and blunting the development of mature CCM lesions. Both drugs significantly decreased chronic hemorrhage in CCM lesions. These findings justify the development of ROCK inhibitors and the clinical testing of commonly used statin agents in CCM.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Brain Neoplasms/drug therapy , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System/drug therapy , Simvastatin/therapeutic use , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Animals , Brain Neoplasms/pathology , Female , Hemangioma, Cavernous, Central Nervous System/pathology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Male , Mice , Mice, Transgenic , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Simvastatin/pharmacology
13.
J Neurosci Methods ; 271: 14-24, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27345427

ABSTRACT

BACKGROUND: Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. NEW METHOD: We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. RESULTS: Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. COMPARISON WITH EXISTING METHOD: Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). CONCLUSIONS: Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases.


Subject(s)
Brain/diagnostic imaging , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System/diagnostic imaging , X-Ray Microtomography/methods , Animals , Apoptosis Regulatory Proteins , Contrast Media , Female , Histological Techniques , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Iodine , Male , Mice , Mice, Transgenic , Observer Variation , Organ Size , Reproducibility of Results , Time Factors , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
14.
J Neuroimmune Pharmacol ; 11(2): 369-77, 2016 06.
Article in English | MEDLINE | ID: mdl-27086141

ABSTRACT

Cerebral cavernous malformations (CCMs) are relatively common vascular malformations, characterized by increased Rho kinase (ROCK) activity, vascular hyper-permeability and the presence of blood degradation products including non-heme iron. Previous studies revealed robust inflammatory cell infiltration, selective synthesis of IgG, in situ antigen driven B-cell clonal expansion, and deposition of immune complexes and complement proteins within CCM lesions. We aimed to evaluate the impact of suppressing the immune response on the formation and maturation of CCM lesions, as well as lesional iron deposition and ROCK activity. Two murine models of heterozygous Ccm3 (Pdcd10), which spontaneously develop CCM lesions with severe and milder phenotypes, were either untreated or received anti-mouse BR3 to deplete B cells. Brains from anti-mouse BR3-treated mice exhibited significantly fewer mature CCM lesions and smaller lesions compared to untreated mice. B cell depletion halted the progression of lesions into mature stage 2 lesions but did not prevent their genesis. Non-heme iron deposition and ROCK activity was decreased in lesions of B cell depleted mice. This represents the first report of the therapeutic benefit of B-cell depletion in the development and progression of CCMs, and provides a proof of principle that B cells play a critical role in CCM lesion genesis and maturation. These findings add biologics to the list of potential therapeutic agents for CCM disease. Future studies would characterize the putative antigenic trigger and further define the mechanism of immune response in the lesions.


Subject(s)
B-Lymphocytes/immunology , Central Nervous System Neoplasms/immunology , Central Nervous System Neoplasms/prevention & control , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System/immunology , Hemangioma, Cavernous, Central Nervous System/prevention & control , Animals , Central Nervous System Neoplasms/pathology , Female , Hemangioma, Cavernous, Central Nervous System/pathology , Male , Mice , Mice, Transgenic
15.
Genet Med ; 17(3): 188-196, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25122144

ABSTRACT

PURPOSE: The phenotypic manifestations of cerebral cavernous malformation disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase-mediated hyperpermeability, a potential therapeutic target, has not been established. METHODS: We analyzed PDCD10 small interfering RNA-treated endothelial cells for stress fibers, Rho kinase activity, and permeability. Rho kinase activity was assessed in cerebral cavernous malformation lesions. Brain permeability and cerebral cavernous malformation lesion burden were quantified, and clinical manifestations were assessed in prospectively enrolled subjects with PDCD10 mutations. RESULTS: We determined that PDCD10 protein suppresses endothelial stress fibers, Rho kinase activity, and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrated robust Rho kinase activity in murine and human cerebral cavernous malformation vasculature and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared with the more common KRIT1 and CCM2 familial and sporadic cerebral cavernous malformation, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features, including scoliosis, cognitive disability, and skin lesions, unrelated to lesion burden or bleeding. CONCLUSION: These findings define a unique cerebral cavernous malformation disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling, and the design of trials.Genet Med 17 3, 188-196.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Central Nervous System Neoplasms/pathology , Hemangioma, Cavernous, Central Nervous System/pathology , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mutation , Proto-Oncogene Proteins/genetics , rho-Associated Kinases/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Adolescent , Adult , Animals , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/genetics , Cells, Cultured , Central Nervous System Neoplasms/enzymology , Central Nervous System Neoplasms/genetics , Child , Child, Preschool , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System/enzymology , Hemangioma, Cavernous, Central Nervous System/genetics , Human Umbilical Vein Endothelial Cells , Humans , Infant , Intracellular Signaling Peptides and Proteins/metabolism , Keratin-1/genetics , Membrane Proteins/metabolism , Mice , Middle Aged , Prospective Studies , Proto-Oncogene Proteins/metabolism , Stress Fibers/drug effects , Stress Fibers/metabolism , Young Adult , rho-Associated Kinases/antagonists & inhibitors
16.
Hum Mol Genet ; 23(16): 4357-70, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24698976

ABSTRACT

Cerebral cavernous malformations (CCMs) are vascular lesions affecting the central nervous system. CCM occurs either sporadically or in an inherited, autosomal dominant manner. Constitutional (germline) mutations in any of three genes, KRIT1, CCM2 and PDCD10, can cause the inherited form. Analysis of CCM lesions from inherited cases revealed biallelic somatic mutations, indicating that CCM follows a Knudsonian two-hit mutation mechanism. It is still unknown, however, if the sporadic cases of CCM also follow this genetic mechanism. We extracted DNA from 11 surgically excised lesions from sporadic CCM patients, and sequenced the three CCM genes in each specimen using a next-generation sequencing approach. Four sporadic CCM lesion samples (36%) were found to contain novel somatic mutations. Three of the lesions contained a single somatic mutation, and one lesion contained two biallelic somatic mutations. Herein, we also describe evidence of somatic mosaicism in a patient presenting with over 130 CCM lesions localized to one hemisphere of the brain. Finally, in a lesion regrowth sample, we found that the regrown CCM lesion contained the same somatic mutation as the original lesion. Together, these data bolster the idea that all forms of CCM have a genetic underpinning of the two-hit mutation mechanism in the known CCM genes. Recent studies have found aberrant Rho kinase activation in inherited CCM pathogenesis, and we present evidence that this pathway is activated in sporadic CCM patients. These results suggest that all CCM patients, including those with the more common sporadic form, are potentially amenable to the same therapy.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carrier Proteins/genetics , Central Nervous System Neoplasms/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Membrane Proteins/genetics , Microtubule-Associated Proteins/genetics , Mutation , Proto-Oncogene Proteins/genetics , Central Nervous System Neoplasms/pathology , Endothelial Cells/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , KRIT1 Protein , rho-Associated Kinases/metabolism
18.
PLoS Genet ; 9(10): e1003807, 2013.
Article in English | MEDLINE | ID: mdl-24130503

ABSTRACT

During ischemic stroke, occlusion of the cerebrovasculature causes neuronal cell death (infarction), but naturally occurring genetic factors modulating infarction have been difficult to identify in human populations. In a surgically induced mouse model of ischemic stroke, we have previously mapped Civq1 to distal chromosome 7 as a quantitative trait locus determining infarct volume. In this study, genome-wide association mapping using 32 inbred mouse strains and an additional linkage scan for infarct volume confirmed that the size of the infarct is determined by ancestral alleles of the causative gene(s). The genetically isolated Civq1 locus in reciprocal recombinant congenic mice refined the critical interval and demonstrated that infarct size is determined by both vascular (collateral vessel anatomy) and non-vascular (neuroprotection) effects. Through the use of interval-specific SNP haplotype analysis, we further refined the Civq1 locus and identified integrin alpha L (Itgal) as one of the causative genes for Civq1. Itgal is the only gene that exhibits both strain-specific amino acid substitutions and expression differences. Coding SNPs, a 5-bp insertion in exon 30b, and increased mRNA and protein expression of a splice variant of the gene (Itgal-003, ENSMUST00000120857), all segregate with infarct volume. Mice lacking Itgal show increased neuronal cell death in both ex vivo brain slice and in vivo focal cerebral ischemia. Our data demonstrate that sequence variation in Itgal modulates ischemic brain injury, and that infarct volume is determined by both vascular and non-vascular mechanisms.


Subject(s)
Genome-Wide Association Study , Integrin alpha Chains/genetics , Stroke/genetics , Alleles , Animals , Brain Injuries/genetics , Brain Injuries/pathology , Brain Ischemia/genetics , Brain Ischemia/physiopathology , Disease Models, Animal , Genetic Linkage , Haplotypes , Humans , Integrin alpha Chains/metabolism , Mice , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Stroke/physiopathology
19.
N Engl J Med ; 368(21): 1971-9, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23656586

ABSTRACT

BACKGROUND: The Sturge-Weber syndrome is a sporadic congenital neurocutaneous disorder characterized by a port-wine stain affecting the skin in the distribution of the ophthalmic branch of the trigeminal nerve, abnormal capillary venous vessels in the leptomeninges of the brain and choroid, glaucoma, seizures, stroke, and intellectual disability. It has been hypothesized that somatic mosaic mutations disrupting vascular development cause both the Sturge-Weber syndrome and port-wine stains, and the severity and extent of presentation are determined by the developmental time point at which the mutations occurred. To date, no such mutation has been identified. METHODS: We performed whole-genome sequencing of DNA from paired samples of visibly affected and normal tissue from 3 persons with the Sturge-Weber syndrome. We tested for the presence of a somatic mosaic mutation in 97 samples from 50 persons with the Sturge-Weber syndrome, a port-wine stain, or neither (controls), using amplicon sequencing and SNaPshot assays, and investigated the effects of the mutation on downstream signaling, using phosphorylation-specific antibodies for relevant effectors and a luciferase reporter assay. RESULTS: We identified a nonsynonymous single-nucleotide variant (c.548G→A, p.Arg183Gln) in GNAQ in samples of affected tissue from 88% of the participants (23 of 26) with the Sturge-Weber syndrome and from 92% of the participants (12 of 13) with apparently nonsyndromic port-wine stains, but not in any of the samples of affected tissue from 4 participants with an unrelated cerebrovascular malformation or in any of the samples from the 6 controls. The prevalence of the mutant allele in affected tissues ranged from 1.0 to 18.1%. Extracellular signal-regulated kinase activity was modestly increased during transgenic expression of mutant Gαq. CONCLUSIONS: The Sturge-Weber syndrome and port-wine stains are caused by a somatic activating mutation in GNAQ. This finding confirms a long-standing hypothesis. (Funded by the National Institutes of Health and Hunter's Dream for a Cure Foundation.).


Subject(s)
GTP-Binding Protein alpha Subunits/genetics , Mutation , Port-Wine Stain/genetics , Sturge-Weber Syndrome/genetics , Brain/pathology , Female , GTP-Binding Protein alpha Subunits, Gq-G11 , Humans , Infant, Newborn , Magnetic Resonance Imaging , Male , Sequence Analysis, DNA
20.
Genet Med ; 13(7): 662-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21543988

ABSTRACT

PURPOSE: Cerebral cavernous malformations can occur sporadically or are caused by mutations in one of three identified genes. Cerebral cavernous malformations often remain clinically silent until a mutation carrier suffers a stroke or seizure. Presymptomatic genetic testing has been valuable to follow and manage cerebral cavernous malformation mutation carriers. During routine diagnostic testing, we identified a two base pair change in seven unrelated people of Ashkenazi Jewish heritage. Because of the location of the variant beyond the invariant splice donor sequence, the change was reported as a variant of unknown significance. In this study, we determined whether this change was a disease-causing mutation and whether it represents a founder mutation in the Ashkenazi Jewish population. METHODS: Transcripts arising from the normal and mutant alleles were examined by reverse transcription-polymerase chain reaction from affected and unaffected Ashkenazi Jewish cerebral cavernous malformation family members. A synthetic splicing system using a chimeric exon was used to visualize the effects of the change on splice donor site utilization. RESULTS: The two base pair change in CCM2, c.30 + 5_6delinsTT, segregated with affected status in the study families. Reverse transcription-polymerase chain reaction revealed loss of the transcript allele that was in phase with the mutation. The two base pair change, when tested in an in vitro synthetic splicing system, altered splice donor site utilization. Resequencing of the genomic region proximal and distal to the CCM2 gene mutation revealed a common single-nucleotide polymorphism haplotype in affected individuals. CONCLUSIONS: The two base pair change in CCM2, c.30 + 5_6delinsTT, disrupted proper splice donor utilization leading to a degraded transcript. Single nucleotide polymorphism haplotype analysis demonstrated that this mutation was due to a founder in the Ashkenazi Jewish population. These data have the potential to simplify genetic testing for cerebral cavernous malformation in the Ashkenazi Jewish population.


Subject(s)
Central Nervous System Vascular Malformations/genetics , Jews/genetics , Mutation , RNA Splicing , Base Sequence , Carrier Proteins , DNA Mutational Analysis , Family Health , Female , Founder Effect , Gene Frequency , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Pedigree , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...